
Johnson Controls —1

Welcome!
Brick Consortium Kickoff
Winter 2021

Johnson Controls —2

Agenda

§ Intro to Brick, the Consortium, and this
kickoff

§ A double-click on Brick, and how it works
under the hood

§ The Brick Working Groups

§ The Brick Roadmap

§ The way forward and getting involved

Johnson Controls —3

Brick Schema is:
§ A uniform metadata schema that defines how the

building data is modeled.
§ Standardized semantic descriptions of the

physical, logical, and virtual entities in buildings
and the relationship between them.

§ Focus on interoperability, not replacement of other
specialized standards

§ Open Source project –
all development is on Github

§ Initiated by researchers from the academic
community in 2015.

What is Brick?

A Brick Model is a digital representation of a
building that adheres to the Brick schema.

Johnson Controls —4

What industry-wide
customer problems
does it solve?

§ Allows owner of the built-
environment to really own the
data

§ Empowers the customer to
bring in the best-in-class third
party applications; Manufacturer
and service-provider can be
different

§ Allows third-party applications
to work independent of the
data silos

§ Provides an integration
“platform” for data from
disparate data sources

§ Allows for true “plug and play”
even if you have multiple
manufacturers’ systems in the
building environment

Brick v1.2 and what’s next

§ Brick 1.2.0 released Feb 20th!
§ Main artifact: a schema defined in RDF – Brick.ttl
§ Typical open source project: BSD license, hosted on Github, community discusses on mailing

list and then creates issues, developers create pull requests, software released through
appropriate channels

§ Lots of contributors, thanks!
§ Future development will continue this way

§ Also tools, datasets, and best practices documentation

§ Issues to address moving forward
§ How do we grow the ecosystem and solve industry problems?
§ Standards exist over decades, how do we go that long?
§ How does a community fairly govern a standard?

Johnson Controls —6

§ The Brick Consortium, Inc. is a non-profit membership
corporation whose purpose is to encourage the research and
development of Brick Schema Specifications for the built
environment and any supporting tooling, documentation, and best
practices necessary to promote Brick.

§ The consortium develops the Brick Schema Specifications as
open source through member participation, addressing an
important industry and societal need by helping to make data of
the built environment interoperable.

§ The consortium is made up of researchers, technology providers,
integrators, and building operators, and will serve as an
organization that can provide the long-term support necessary to
maintain and enhance the Brick schema until 2040 and beyond.

§ The consortium provides governance for the Brick Schema
specifications and conformance testing protocols and provides
tooling and a repository of reference models and canonical use
cases.

§ The consortium also funds the research of work related to Brick
and the built environment and works to evangelize the use of the
Brick schema. Governance and development of Brick Schema,
tooling, conformance testing, and canonical use case and
reference solution

Introducing the Brick Consortium

Johnson Controls —7

§ Membership in the Brick Consortium is
open to commercial entities, universities
and non-profit research institutions, and
individual academic researchers.

§ Membership for commercial entities is
available as a full member or a contributing
member.

§ A contributing member does not have a
vote for the Steering Committee or can
chair committees but is otherwise fully
eligible to participate.

§ Universities and non-profit institutions do
not pay any membership fees. In some
cases, individual academic researchers
may join in lieu of their institution joining.

§ Membership is not required to participate
in the open source development efforts

Brick Consortium Membership

Johnson Controls —8

§ Schema development (e.g. the standard):
open source development, just like today
§ New: members vote before a release,

each member org get a vote

§ Work happens in working groups, natural
evolution of current effort

§ The elected Technical Committee creates
new work groups and coordinates
between the groups

Brick Development with the Consortium

Agenda for today

§ Brick in detail – Gabe Fierro, UC Berkeley
§ Review of Brick
§ What’s new in Brick 1.2
§ How we develop Brick
§ Software to support Brick

§ Brick Working Groups
§ Full organization structure and how to join

§ The Brick Roadmap – a discussion
§ Specifics of Brick 1.2.1 and 1.3
§ Thinking bigger: moving the industry forward

Brick Overview and
Refresher

Gabe Fierro

https://brickschema.org

Working with data in buildings is hard

… because there is no consistent,
machine-readable representation
of data sources and their context

We need semantic metadata

State of Building Metadata

Building Management System (BMS): the “operating system” for your building

Point: a source of data
from a cyberphysical
system

10s or 100s of
thousands of points in
a typical CPS

3

https://brickschema.org

State of Building Metadata
- Open up your building management/automation system, look at the point names

- 3 different buildings/BMS/subsystems → 3 (or more) different labeling/naming schemes

https://brickschema.org

Make Working with Building Data Easier
- Most building data resides in opaque data silos

- Unclear, inconsistent, hard-to-interpret labels
- (if you have access to it at all)

- Existing metadata standards focus on other perspectives of the building
- Design, construction
- Asset management
- Commissioning, Auditing

- Need a metadata representation designed for data-driven building
software

- Unlock potential of building data
- Preserve existing investments

https://brickschema.org

Brick Schema

https://brickschema.org

- Graph-based metadata schema for
smart buildings

- Capture physical, logical, virtual
entities in buildings using a class
hierarchy

- Capture the necessary relationships
between them

- Use Brick to describe timeseries data
and its context

https://brickschema.org

Brick Classes
Point

Sensor

Temperature Sensor

Air Temperature
Sensor

Supply Air Temperature
Sensor

Humidity Sensor

Return Air Temperature
Sensor

...

...

Setpoint

Damper Position Setpoint

Temperature Setpoint

...

Command

...

Equipment

HVAC

Air Handling Unit

Terminal Unit

...

Variable Air Volume Box

Constant Volume Box

Fan Coil Unit

...

Lighting

Switches

...

Luminaires and Lamps

...

Location

Room

Conference Room

Classroom

Lecture Hall

Kitchen

Reception

...

Building

Floor

Zone

HVAC Zone

Lighting Zone

Fire Zone

...

7

https://brickschema.org

Brick Overview

- Three main concepts, each the root
of their own class hierarchy

- Classes provide definition,
organization to entities

- Entities are the physical, logical and
virtual “things”

- Relationships dictate how entities
correspond and relate to each other

Equipment

Location

Point

isPointOf

hasPart
feeds

hasLocation
feeds

hasPart
hasLocation
isPointOf

https://brickschema.org

- Have a set of physical, virtual “things” and points that an application wants to refer to- Have a set of physical, virtual “things” and points that an application wants to refer to
- Brick defines a hierarchical class structure to define standard names for equipment, points,

locations, etc

- Have a set of physical, virtual “things” and points that an application wants to refer to
- Brick defines a hierarchical class structure to define standard names for equipment, points,

locations, etc
- Brick defines a set of standard relationships that describe how things are connected

https://brickschema.org

A Brick model represents the assets and relationships and data in a building

represents

Brick model

https://brickschema.org

An application queries a Brick model to retrieve the data + configuration it needs

queries

Application

Query

Brick model

https://brickschema.org

- Relate Brick Point classes to timeseries data
- Contextualize data in existing datastores

https://brickschema.org

https://brickschema.org

Full Brick model of the sample site

1 of 2 VAV models

Detailed AHU model

Part of Location model

https://brickschema.org

Brick Query: Minimum Airflow Requirements

RM-101Room

ZN-101HVAC
Zone

VAV-101VAV

(RM101
Volume)

hasVolume

unit:M3

50

value

hasUnit

feeds

hasPart

SAF101

hasPoint

SupplyAir
FlowSensor

 # Identify the room’s VAV
 ?zone brick:hasPart <RM-101>.
 ?zone rdf:type brick:HVACZone.
 ?device brick:feeds ?zone.
 ?device rdf:type brick:TerminalUnit.

86915e...
hasTimeseriesID

Uncerscores are omitted due to the limited

space

 # Get the air flow sensor’s timeseries ref.
 ?device brick:hasPoint ?saf.
 ?saf rdf:type brick:AirFlowSensor.
 ?saf brick:hasTimeseriesID ?saf_ref.

 # Get the room’s volume.
 ?room brick:hasVolume ?quantity.
 ?quantity brick:value ?volume
 ?quantity brick:hasUnit ?unit
}

select ?saf_ref ?volume ?unit where {

https://brickschema.org

Brick Model Validation
Templates ensure that Brick
models match expectations,
requirements

Verify that Brick is being used
correctly

https://brickschema.org

Brick Resources
- Developer-focused documentation:

- https://docs.brickschema.org/

- Concept documentation:
- https://brickschema.org/ontology

- Download Brick and examples:
- https://brickschema.org/resources

- Python library:
- https://brickschema.readthedocs.io/

https://brickschema.org

Brick ontology: formal
definitions of concepts,
relationships

Brick model: the graph
representing a particular building

18

What’s in a Name?

SODA1R465__ARSSODA1R465__ARS
Site name

SODA1R465__ARS
Air Handling

Unit

SODA1R465__ARS
Equip ID

SODA1R465__ARS
Zone/Room

Zone Name

SODA1R465__ARS
Padding /
delimiter

SODA1R465__ARS
Zone Air

Temperature Setpoint

SODA1R465__ARS

- Labels like these often the only up-to-date and readily-available source of metadata
- Site-specific conventions; sometimes no labels at all
- No consistent, standard metadata for cyberphysical system data 19

OUTLINE
1. Brick Implementation

The Brick Distribution
Extending Brick

2. Brick Tooling
brickschema Python package
brick-builder and OpenRefine

example:tstat_ABC rdf:type brick:Thermostat ;
brick:hasPoint example:sen1 .

example:sen1 rdf:type brick:Temperature_Sensor .

SIMPLE BRICK CLASS
brick:Temperature_Sensor a owl:Class ;

1
2

SIMPLE BRICK CLASS
brick:Temperature_Sensor a owl:Class ;

1
2
1

SIMPLE BRICK CLASS
brick:Temperature_Sensor a owl:Class ;

1
2
11

SIMPLE BRICK CLASS
brick:Temperature_Sensor a owl:Class ;

1
2
111

SIMPLE BRICK CLASS
brick:Temperature_Sensor a owl:Class ;

1
2
111

brick:Temperature_Sensor a owl:Class ;
1
2

EXTENDING BRICK

EXTENDING BRICK

"Sensor": {

bricksrc/sensor.py1
sensor_definitions = {2

3

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

EXTENDING BRICK

"Sensor": {

bricksrc/sensor.py1
sensor_definitions = {2

3

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

bricksrc/sensor.py1
sensor_definitions = {2

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

EXTENDING BRICK

"Sensor": {

bricksrc/sensor.py1
sensor_definitions = {2

3

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

bricksrc/sensor.py1
sensor_definitions = {2

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

bricksrc/sensor.py1
sensor_definitions = {2

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

EXTENDING BRICK

"Sensor": {

bricksrc/sensor.py1
sensor_definitions = {2

3

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

bricksrc/sensor.py1
sensor_definitions = {2

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

bricksrc/sensor.py1
sensor_definitions = {2

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

 [BRICK.measures, BRICK.Temperature],
 [BRICK.measures, BRICK.Air],
],

bricksrc/sensor.py1
sensor_definitions = {2

13
14
15

EXTENDING BRICK

"Sensor": {

bricksrc/sensor.py1
sensor_definitions = {2

3

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

bricksrc/sensor.py1
sensor_definitions = {2

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

bricksrc/sensor.py1
sensor_definitions = {2

 [BRICK.measures, BRICK.Temperature],13
 [BRICK.measures, BRICK.Air],14
],15

 [BRICK.measures, BRICK.Temperature],
 [BRICK.measures, BRICK.Air],
],

bricksrc/sensor.py1
sensor_definitions = {2

13
14
15

bricksrc/sensor.py
sensor_definitions = {

"Sensor": {

 [BRICK.measures, BRICK.Temperature],
 [BRICK.measures, BRICK.Air],
],

1
2
3

13
14
15

EXTENDING BRICK
How to add a Glycol Temperature Sensor

1. Find an appropriate parent class
2. Add the class definition to the Python file
3. Add textual definition to definitions.csv
4. Compile and run tests

EXTENDING BRICK
How to add a Glycol Temperature Sensor

Find an appropriate parent class
Add the class definition to the Python file

"Glycol_Temperature_Sensor": {
"tags": [TAG.Point, TAG.Sensor, TAG.Temperature, TAG.Glycol],
"substances": [

 [BRICK.measures, BRICK.Temperature],
 [BRICK.measures, BRICK.Glycol],
],

bricksrc/sensor.py1
sensor_definitions = {2

10
11
12
13
14
15

EXTENDING BRICK
How to add a Glycol Temperature Sensor

Add textual definition to definitions.csv

https://brickschema.org/schema/Brick#Glycol_Temperature_Sensor,A sensor which measures the temperature of glycol

bricksrc/definitions.csv1

3

EXTENDING BRICK
How to add a Glycol Temperature Sensor

Compile using the Makefile
(venv) gabe@arkestra:~/src/Brick$ make1
mkdir -p extensions2
python generate_brick.py3

EXTENDING BRICK
How to add a Glycol Temperature Sensor

Run unit and integration tests
(venv) gabe@arkestra:~/src/Brick$ make test1
tests/test_class_structure.py::test_subclasses PASSED2
tests/test_conversions.py::test_queries PASSED3
tests/test_definitions.py::test_class_definitions PASSED4
tests/test_definitions.py::test_relationship_definitions PASSED5
tests/test_definitions.py::test_obsolete_definitions PASSED6
tests/test_generate_shacl.py::test_domainProperties PASSED7
tests/test_generate_shacl.py::test_rangeProperties PASSED8
tests/test_measures_inference.py::test_measurable_hierarchy PASSED9
tests/test_no_inference.py::test_query_equipment PASSED10
tests/test_no_inference.py::test_query_points PASSED11
tests/test_no_inference.py::test_query_sensors PASSED12
tests/test_no_inference.py::test_query_downstream_temperature PASSED13
tests/test_no_inference.py::test_query_room_temp_sensors_ahu1 PASSED14
tests/test_quantities.py::test_measurables_defined PASSED15

EXTENDING BRICK

BRICK TOOLING: brickschema
pip install brickschema

Simple Python package for managing and programming against the Brick ontology

Load, validate Brick models
Query, update Brick models
Simple inference support, extensions, alignments

BRICK TOOLING: brickschema

The graph is the unit of management for Brick

empty graph with no triples
g = brickschema.Graph()

2
3

creates a new rdflib.Graph with a recent version 4
of the Brick ontology preloaded.5

OR use the absolute latest Brick:7

OR create from an existing model9

BRICK TOOLING: brickschema

The graph is the unit of management for Brick

empty graph with no triples
g = brickschema.Graph()

2
3

creates a new rdflib.Graph with a recent version 4
of the Brick ontology preloaded.5

OR use the absolute latest Brick:7

OR create from an existing model9

creates a new rdflib.Graph with a recent version
of the Brick ontology preloaded.

empty graph with no triples2
g = brickschema.Graph()3

4
5

OR use the absolute latest Brick:7

OR create from an existing model9

BRICK TOOLING: brickschema

The graph is the unit of management for Brick

empty graph with no triples
g = brickschema.Graph()

2
3

creates a new rdflib.Graph with a recent version 4
of the Brick ontology preloaded.5

OR use the absolute latest Brick:7

OR create from an existing model9

creates a new rdflib.Graph with a recent version
of the Brick ontology preloaded.

empty graph with no triples2
g = brickschema.Graph()3

4
5

OR use the absolute latest Brick:7

OR create from an existing model9

OR use the absolute latest Brick:

empty graph with no triples2
g = brickschema.Graph()3
creates a new rdflib.Graph with a recent version 4
of the Brick ontology preloaded.5

7

OR create from an existing model9

BRICK TOOLING: brickschema

The graph is the unit of management for Brick

empty graph with no triples
g = brickschema.Graph()

2
3

creates a new rdflib.Graph with a recent version 4
of the Brick ontology preloaded.5

OR use the absolute latest Brick:7

OR create from an existing model9

creates a new rdflib.Graph with a recent version
of the Brick ontology preloaded.

empty graph with no triples2
g = brickschema.Graph()3

4
5

OR use the absolute latest Brick:7

OR create from an existing model9

OR use the absolute latest Brick:

empty graph with no triples2
g = brickschema.Graph()3
creates a new rdflib.Graph with a recent version 4
of the Brick ontology preloaded.5

7

OR create from an existing model9 # OR create from an existing model

empty graph with no triples2
g = brickschema.Graph()3
creates a new rdflib.Graph with a recent version 4
of the Brick ontology preloaded.5

OR use the absolute latest Brick:7

9

BRICK TOOLING: brickschema

The graph is the unit of management for Brick

load in data files from your file system
g.load_file("mybuilding.ttl")

import brickschema1

3
4

...or by URL5

BRICK TOOLING: brickschema

The graph is the unit of management for Brick

load in data files from your file system
g.load_file("mybuilding.ttl")

import brickschema1

3
4

...or by URL5 # ...or by URL

import brickschema1

load in data files from your file system3

5

BRICK TOOLING: brickschema

Reasoning adds implied information to the Brick graph

g.expand(profile="owlrl") # also supports 'rdfs', 'shacl', 'vbis'4

BRICK TOOLING: brickschema

Reasoning adds implied information to the Brick graph

g.expand(profile="owlrl") # also supports 'rdfs', 'shacl', 'vbis'4

BRICK TOOLING: brickschema

Validate the Brick ontology is being used correctly

valid, _, resultsText = g.validate()
if not valid:
 print("Graph is not valid!")
 print(resultsText)

5
6
7
8

BRICK TOOLING: brickschema

Extensions and alignments add features, enable integration with other ontologies
and metadata representations

g.get_extensions()
=> ['shacl_tag_inference']
g.load_extension('shacl_tag_inference')
g.expand("shacl") # usually run reasoning after loading extension

4
5
6
7
8

g.get_alignments()9
=> ['VBIS', 'REC', 'BOT']10

BRICK TOOLING: brickschema

Extensions and alignments add features, enable integration with other ontologies
and metadata representations

g.get_extensions()
=> ['shacl_tag_inference']
g.load_extension('shacl_tag_inference')
g.expand("shacl") # usually run reasoning after loading extension

4
5
6
7
8

g.get_alignments()9
=> ['VBIS', 'REC', 'BOT']10
g.get_alignments()
=> ['VBIS', 'REC', 'BOT']

g.get_extensions()4
=> ['shacl_tag_inference']5

8
9

10

BRICK TOOLING: brickschema

SPARQL queries retrieve parts of the Brick graph for applications

perform SPARQL queries on the graph
res = g.query("""SELECT ?afs ?afsp ?vav WHERE {
 ?afs a brick:Air_Flow_Sensor .
 ?afsp a brick:Air_Flow_Setpoint .
 ?afs brick:isPointOf ?vav .
 ?afsp brick:isPointOf ?vav .
 ?vav a brick:VAV
}""")
for row in res:
 (air_flow_sensor, air_flow_setpoint, vav) = row
 print(row)

4
5
6
7
8
9

10
11
12
13
14

BRICK TOOLING: brickschema

g.serve()4

BRICK TOOLING: brick-builder

BRICK TOOLING: brick-builder

BRICK TOOLING: brick-builder

BRICK TOOLING: brick-builder
Export parsed data to CSV files
Write a brick-builder template (below)

brick = https://brickschema.org/schema/1.1/Brick#
rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#
bldg = http://example.org/building#

bldg:$1 rdf:type brick:VAV
bldg:$1 brick:hasPoint bldg:$2
bldg:$2 rdf:type brick:Temperature_Sensor
bldg:$1 brick:hasPoint bldg:$3
bldg:$3 rdf:type brick:Temperature_Setpoint
$4? bldg:$1 rdf:type brick:RVAV

BRICK TOOLING: brick-builder
Builds on OpenRefine tool, Reconciliation API
Tutorial Video: https://www.youtube.com/watch?v=LKcXMvrxXzE
NLP-based, other inference techniques under development

Johnson Controls —10

§ What most folks think of when we say
“developing Brick”

§ Responsible for stewardship of the
Brick Schema

§ Managing Brick ontology – new
classes, new properties and
relationships, data modeling
approaches

§ Extend Brick to new domains
§ Create reference models

Working Group 1: Schema

Johnson Controls —11

§ More software development than
modeling

§ Tools to make it easier to create,
manage, and exchange Brick models

§ Extend/rewrite research prototypes into
production tools

§ Examples
§ Py-brickschema
§ Brick-builder (and next-gen version

from CMU)
§ “Shepherding” tool from Buildsys

2020

Working Group 2: Tooling

Johnson Controls —12

§ Probably more analytics than
applications at the beginning

§ “Applying” Brick
§ Coordinate with Schema WG – for a

given use case, what’s missing from
the model?
§ Similarly with tooling working

group
§ May also create “reference models”

Working Group 3: Applications

Johnson Controls —13

§ Interest in collecting anonymized
datasets of buildings

§ Important for research community and
important for validating schema and
applications

§ Work closely with tooling – a serving
platform can be a reference
implementation

§ Also ingestion and model creation,
with one extra anonymization step

Working Group 4: Datasets

Johnson Controls —14

§ Two other groups likely on the horizon
§ Conformance
§ Data Exchange

§ Groups will kick off in March
§ Please add your name to interest

survey if you haven’t already!
§ https://groups.google.com/g/bricksche

ma/c/OOHSCDEZwnc

Working Groups: Next Steps

The Brick Consortium Organization

§ Steering Committee: Sets rules
and membership fee, approves
new “technical areas” for Brick to
work on

§ Has a role in IP consideration

§ Technical Committee:
Responsible for creating Brick,
but mostly through Working
Groups. Decides when to send
Schema out for a vote for release,
30 day clock for vote

§ Other Committees: Will likely
stay on-hold for the first few
months

Ontology
Working Group
Members and
non-members

eligible

Board of Directors
Corporate Governance,

Membership Rules
Meets infrequently

Steering Committee
Oversees “day to day”

All members eligible, up to 7 people
Elected by Full Members

Communications
Committee

Runs Brick Website and PR
All members eligible

Technical Services Committee
Responsible for conformance

All members eligible

Technical Committee
Votes to send Brick schema

out for Approval
All members eligible

Application
Working Group
Members and
non-members

eligible

Tooling Working
Group

Members and
non-members

eligible

Johnson Controls —16

§ Brick Consortium takes IP and IP Disclosure very
seriously. We do not want anyone to be
surprised!

§ Any member or participant who proposes
enhancements to the Brick schema must
disclose if they have relevant IP – unless they
are willing to grant a “non-remunerative license”
for that IP.

§ Detailed in section 5 of the membership rules –go
by what that says!

§ Inspired by IETF but closes some loopholes

§ Also required to disclose if you are aware of IP
even if you don’t own it

§ Steering Committee can approve the inclusion
into the standard parts that would require a
license

§ Please review section 5 of the membership rules
carefully

Brick and IP

To Join Brick Consortium

§ Choose appropriate
membership level

§ Complete Membership
Form from website

§ Submit 2021 dues

Vote for
Steering
Committee

Chair any
committee

Serve on any
other
committee

Vote for any
other
committee

2021
Membership
Fee

Full Member Yes Yes Yes Yes $50,000

Institutional
Member

No Yes Yes Yes $0

Academic
Individual
Member

No Yes Yes Yes $0

Contributing
Member

No No Yes Yes $5000

Brick Public Roadmap Discussion
http://roadmap.brickschema.org/

Johnson Controls —19

Brick Roadmap Discussion
§ If you are a potential adopter of

Brick, what do you think is
important to see in Brick?

§ If you are a potential adopter of
Brick, what's necessary for you to
get Brick into your products?

§ What are you willing to work on?

Thank You

