
1

Formalizing Tag-Based Metadata with the
Brick Ontology
Gabe Fierro 1,∗, Jason Koh 2 Shreyas Nagare 3 Xiaolin Zang 3 Yuvraj Agarwal 3

Rajesh K. Gupta 2 and David E. Culler1

1Computer Science, UC Berkeley, Berkeley, CA, USA
2Computer Science, UC San Diego, San Diego, CA, USA
3Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
Correspondence*:
Gabe Fierro
gtfierro@cs.berkeley.edu

ABSTRACT2

Current efforts establishing semantic metadata standards for the built environment span3
academia, industry and standards bodies. For these standards to be effective, they must be4
clearly defined and easily extensible, encourage consistency in their usage, and integrate cleanly5
with existing industrial standards, such as BACnet. There is a natural tension between informal6
tag-based systems that rely upon idiom and convention for meaning, and formal ontologies7
amenable to automated tooling.8

We present a qualitative analysis of Project Haystack, a popular tagging system for building9
metadata, and identify a family of inherent interpretability and consistency issues in the tagging10
model that stem from its lack of a formal definition. To address these issues, we present the11
design and implementation of the Brick+ ontology, a drop-in replacement for Brick with clear12
formal semantics that enables the inference of a valid Brick model from an informal Haystack13
model, and demonstrate this inference across five Haystack models.14

Keywords: Smart Buildings, Building Management, Metadata, Ontologies, OWL, RDF, Brick, Haystack15

1 INTRODUCTION
Smart buildings have long been a target of efforts aiming to reduce energy consumption, improve occupant16
comfort, and increase operational efficiency. Although a substantial body of work advances the state-of-the-17
art — including automated control [39, 10, 31], modeling [32] and analysis [38, 20] — such approaches18
do not see widespread use due to the prohibitive cost of configuring their instantiation to each building. A19
major factor in this cost is due to lack of interoperability standards; without such standards, the rollout of20
energy efficiency measures involves customizing implementations to the one-off combinations of hardware21
and software configurations that are unique to each building. Limited deployment of energy efficiency22
applications constrains the ability to evaluate potential savings [26]. Recent studies by the US Department23
of Energy [27, 18] have established that a lack of interoperability standards for buildings reduces the24
cost-effectiveness and scalability of energy efficiency techniques and analyses.25

1

Fierro et al.

Semantic metadata standards present a promising path to enabling interoperability by offering uniform26
descriptions of building resources to application developers and building operators. Today, semantic27
metadata standardization efforts for buildings span academia [4], industry [1, 37] and standards bodies [35,28
3]. As applications developed for the built environment have become increasingly data-focused, recent29
metadata standard efforts have shifted from supporting the initial construction and commissioning phases30
of operation to enabling robust descriptions of the provenance and context of collected data.31

1.1 Brick and Haystack Metadata Systems32

Emerging data-oriented metadata standards differ in their support for consistent and extensible use.33
De-facto industrial metadata practices have embraced unstructured vendor- and building-specific idioms34
intended for human consumption rather than programmatic manipulation. Several standardization efforts35
have arisen to address the ad-hoc nature of building metadata. Of these, Brick [4] and Project Haystack [1]36
have seen adoption and investment from academic and industrial sources, and are involved in the ASHRAE37
223P effort to standardize semantic tagging for building data [3].38

Project Haystack is a commonly-used open building metadata standard that replaces unstructured labels39
with semi-structured sets of tags1. However, the informal and ad-hoc composition of these tags precludes40
consistent usage; this leaves interpretation of tags up to the tacit knowledge of domain experts.41

Brick is a recently introduced metadata standard designed for completeness (describing all of the relevant42
concepts required for applications), expressiveness (capturing the explicit and implicit relationships required43
for applications) and usability (fulfilling the needs of domain experts and application developers). Although44
evaluations of Brick demonstrate its ability to robustly capture a wide variety of application requirements,45
the story of how Brick integrates with existing tooling and industrial practices, such as Haystack, has been46
less clear.47

Put simply, Brick and Haystack serve different goals. Brick is designed for the complete and consistent48
modeling of concepts required for developing portable software that can be deployed at scale. Haystack is49
designed for building managers and engineers who need familiar idioms for developing and using software50
designed to function on a small number of buildings. However, these informal practices are not sufficient for51
the large-scale standardization of consistent semantic metadata necessary for the widespread deployment52
of energy efficiency applications. Consistent metadata requires a set of rules formalizing how metadata can53
be defined, structured, composed and extended.54

In this paper, we present the design and implementation of Brick+, a drop-in replacement for the Brick55
ontology with clear formal semantics designed for the sensible composition of concepts required for56
portable building applications. The key design principle of Brick+ is the choice to model concepts in terms57
of the formal composition of their properties. This is more expressive than the original Brick class hierarchy58
which captures specialization, but not behavior. Brick+ enables the inference of properties beyond what can59
be captured by tag-based metadata schemes or the original Brick schema, including modeling the behavior60
of equipment and points and formalizing Haystack models.61

Ultimately, the formal representation of metadata enables a greater degree of consistency and consistency62
on behalf of the model, while enabling a family of supporting tooling that facilitate the production of Brick+63
models from existing tag-based metadata, the systematic validation of those models, and the migration of64
existing Brick models to the proposed Brick+.65

1 Referred to as “Haystack” in the rest of the paper

This is a provisional file, not the final typeset article 2

Fierro et al.

1.2 Overview66

§3 presents an analysis of the systemic interpretability and consistency issues endemic to the Haystack67
metadata system, motivating the need for formal rules for composition. This is one of the first systematic68
evaluations of Project Haystack’s approach to metadata: how it impacts consistency and to what extent69
it enables or inhibits semantic interoperability. §4 presents the design of Brick+, a drop-in replacement70
for Brick with clear formal semantics. Brick+ defines a class lattice that structures the composition of71
concepts. This lattice enables Brick+ to define inference from Haystack’s informal tags to formal Brick72
classes. §5 presents the implementation of Brick+ using the OWL-DL ontology language and defines the73
process by which a Brick model can be inferred from a set of tagged Haystack entities. §8 evaluates the74
Brick+ ontology and inference methodology by observing the accuracy of classifying entities from five75
Haystack models to Brick+, and examining the additional properties that can be inferred by Brick+ over76
104 existing Brick models. §9 summarizes ongoing and future efforts to integrate the Brick and Haystack77
metadata standards and concludes.78

Since publication of [13], Brick+ has been adopted into the release of Brick v1.1. This paper extends79
[13] with:80

1. a deeper discussion of the challenges in formalizing metadata tags, and how the implementation of81
Brick+ resolves these issues (§5.2)82

2. the design and implementation of a tool for validating usage of the Brick ontology using SHACL, and83
techniques for defining templates and idioms that assist in Brick usability (§6)84

3. the design and implementation of a tool for migrating Brick models from older versions of the Brick85
ontology to newer versions (§7)86

The production and evaluation of the above Brick+ tooling validates the choice of a formalized semantic87
metadata model. Not only is the tooling straightforward to construct given the Python-based implementation88
and formal construction, it also presents an opportunity to unify the Brick and Haystack metadata standards89
beyond a fragile “house of sticks” constructed from idiom and convention.90

2 BACKGROUND
We define a set of concepts for later use, provide an overview of the Brick and Haystack metadata models,91
and discuss how Brick+ fits into the existing body of literature.92

2.1 Definitions93

We refer to the following terms throughout the paper:94

• A tag is an atomic fact or attribute; tags may or may not be associated with a value.95

• A tag set is an unordered collection of tags associated with an entity.96

• A valid tag set is a tag set with a clear, real-world definition.97

• An entity is an abstraction of a physical, logical or virtual item.98

• A class is a category of entities defined by a particular shared purpose and properties.99

In Brick and Brick+, classes are organized by the subclass and superclass relationships between classes.100
This approach organizes classes naturally in terms of more specific or more general concepts. For example,101
the class of “sensors” is more general than the class of “temperature sensors” (sensors that measure the102
temperature property of some substance) and the class of “air sensors” (sensors that measure properties103
of air), which are both more general than the class of “air temperature sensors“ (sensors that measure104

Frontiers 3

Fierro et al.

the temperature property of air). In Brick, Air Temperature Sensor is the class of all entities that105
measure the temperature of air.106

2.2 Haystack107

Haystack defines entities as a set of value tags (representing key-value pairs) and marker tags (singular108
annotations). Value tags define attributes of entities such as name, timezone, units and data type. Ref tags109
are a special kind of value tag that refer to other Haystack entities. These hint at relationships, but are110
entirely generic; the relationship is understood by convention. Haystack provides a dictionary of defined111
tags on its website [1]. The set of marker tags for an entity constitute the “tag set” for that entity and112
construe the concept of which the entity is an example (its “type”).113

2.3 Brick114

The Brick ontology has two components: an extensible class hierarchy representing the physical and115
logical entities in buildings, and a minimal set of relationships that capture the connections between116
entities. A Brick model of a building is a labeled, directed graph in which the nodes are entities and117
the edges are relationships. Brick is defined using the Resource Description Framework (RDF) data118
model [24], which represents graph-based knowledge as tuples of (subject, predicate, object)119
termed triples. A triple states that a subject entity has a relationship (predicate) to an object entity. Line 2120
of Figure 2 is a triple for which the subject is :sensor1, the predicate (relationship) is a, and the object121
is brick:Temperature Sensor.122

Brick and Brick+ are both defined with the RDFS [17] and OWL [7] knowledge representation languages.123
These languages allow the expression of rules and constraints for authoring ontologies, which can be124
interpreted by a semantic reasoner such as HermiT [16] to materialize inferred triples from a set of input125
triples. Brick+’s use of a semantic reasoner is covered in §5.126

2.4 Prior Metadata Construction Efforts127

Several other works conduct inference and classification to extract structure from unstructured building128
metadata, including leveraging semi-supervised learning approaches to learn parsing rules for unstructured129
labels [9, 22], classifying sensors by examining historical timeseries data [19, 15], or by combining130
timeseries analysis with label clustering [6]. These efforts are largely complementary to Brick+. Brick+131
defines formal methods for inference-based classification of tagged entities, but requires external support132
for extracting tagged entities from unstructured metadata.133

Beyond the building domain, there is a family of work [28, 29] using ontologies to provide structure134
to tag-based folksonomies [25]. The approaches developed in these works, along with work on formal135
concept analysis [43] and concept lattices [42], form the theoretical basis for Brick+.136

2.5 Relation to Building Information Modeling137

Building information modeling (BIM) relates to the data exchanged for the design, construction and138
commissioning of a building. BIM models contain extensive lists of building assets in addition to 3D139
geometry, and there is active research into extending the use of BIM for operation and maintenance [40, 44].140
However, BIM models lack direct representation of the contextual metadata described by Brick and141
Haystack [8, 23]. For example, a BIM model can represent a fan and describe its physical properties such as142
the shape of the blades, but does not explicitly label whether the fan is installed on the supply or return side143
of an HVAC system. Deriving that information requires traversing the complex objects and relationships144
that describe the ducts, connectors and other components of the HVAC system [12], which is difficult145
to do in an automated manner. Despite these difficulties in retrieving the contextual metadata required146
to run data-driven applications, BIM is largely complementary to Brick and Haystack. Recent work in147

This is a provisional file, not the final typeset article 4

Fierro et al.

representing BIM models using an OWL-based ontology [30] will enable well-defined mappings between148
the Brick+ and ifcOWL ontologies.149

3 SYSTEMIC TAG ISSUES IN HAYSTACK
Although Haystack models have seen increasing adoption, the design of the Haystack data model has several150
intrinsic issues that limit its consistency and interpretability. Here, we present one of the first analyses of151
the Haystack data model and how its tag-based implementation impacts consistency, interpretability and152
interoperability.153
3.1 Lack of Formal Class Hierarchy154

A well-formed class hierarchy organizes concepts by their specificity. This is essential for the creation of155
consistent metadata models because it facilitates automated discovery of classes by way of traversing the156
hierarchy for more general or more specific concepts. In the process of identifying an appropriate class157
for an entity, a user can browse the hierarchy from the most general classes (equipment, location, sensor,158
setpoint, substance) to the specific class whose definition best describes the entity.159

A well-formed class hierarchy is extensible. Users can create new, more specific classes that subclass160
existing, but more general, superclasses. Even in the absence of a textual definition for this new class, the161
subclass relationship provides an immediate contextual scoping for how the class is meant to be used.162

Haystack lacks an explicit class hierarchy, and the informal construction of Haystack complicates the163
automated generation of one. Recall that the type of each entity in a Haystack model is defined by a set of164
tags. We can formalize this as:165

Definition 3.1. The set of tags for a class or entity x is given by T (x). The definition of a class C is any166
entity that has the tags defined by T (C). An entity e is a member of class C if T (e) ⊇ T (C)167

This definition embeds the key assumption of tag-based metadata: smaller tag sets convey more generic168
concepts. As an example, the pseudo-class identified by the Haystack tags discharge air temp169
setpoint is a subclass of the class identified by the tags air temp setpoint. However, the use of170
tag sets to specify the subclass relationship is insufficient for a well-formed class hierarchy because it is171
possible to construct two class definitions Ci and Cj such that T (Ci) ⊇ T (Cj) but the definition of Ci is172
not semantically more specific than Cj .173

Consider the counter example of two concepts: Air Flow Setpoint (the desired cubic feet per174
minute of air flow) and Max Air Flow Setpoint (the maximum allowed air flow setpoint). In175
Haystack, Air Flow Setpoint would be identified by the air, flow and sp tags, and Max Air176
Flow Setpoint would be identified by the air, flow, sp and max tags. Although suggested by the177
set-based relationship, Air Flow Setpoint is not a superclass of Max Air Flow Setpoint: the178
former is a setpoint, but the latter is actually a parameter governing the selection of setpoints and therefore179
belongs to a distinct subhierarchy.180

As a result, the rules for defining valid tagsets for subclass relationships must be defined in terms of181
which tags can be added to a given tag set to produce a valid subclass relationship. Defining a concept182
requires knowing which tags cannot be added; without a clear set of rules for validation, a user may use183
the max and min tags to indicate the upper/lower bounds of deadband-based control, which is inconsistent184
with the intended usage of these tags.185

Frontiers 5

Fierro et al.

Tag D
es

c.
e
q
u
i
p

D
es

c.
p
o
i
n
t

D
es

c.
m

ec
ha

ni
sm

Fo
rA

H
U

Fo
rV

AV

Fo
rC

oi
l

Fo
rV

al
ve

Fo
rC

hi
lle

r

Fo
rB

oi
le

r

he
at

in
g

heat × × × ×
heating ×
hotWaterHeat × × ×
gasHeat × × ×
elecHeat × × ×
steamHeat × × ×
perimeterHeat × ×

re
he

at
in

g reheat × ×
reheating × ×
hotWaterReheat × × ×
elecReheat × × ×

co
ol

in
g

cool × × × ×
cooling ×
coolOnly × ×
dxCool × × ×
chilledWaterCool × × ×
waterCooled × ×
airCooled × ×

Table 1. An enumeration of the intended use and context of tags relating to heating and cooling, as given
by the Haystack documentation. Note the differences in diction across compound tags, and how some
compound tags could be assembled from more atomic tags. Some tags are used both for equipment and for
points when equipment is modeled as a single point (such as VFDs, Fans, Coils)

3.2 Balancing Composability and Consistency186

One of the primary benefits of an tag-based metadata scheme is composability. A dictionary of tags187
provides the vocabulary from which users can draw the terms they need to communicate some concept.188
Composing sets of tags together allows for communication of increasingly complex concepts, and adding189
new tags to the dictionary exponentially increases the number of describable concepts.190

However, increased composability comes at the cost of lower consistency: a clear, unambiguous, one-191
to-one mapping between a set of tags and a concept. Without rules defining composability, consistent192
interpretation of a tag set is dependent upon idiom, convention and other “common knowledge” of the193
community using the tags. As a result, the set of tags used by one individual to describe an entity may have194
multiple meanings or no meaning at all to other individuals. In other words, the intended meaning of a tag195
becomes more ambiguous the more contexts in which it is used. For example, using the tags heat, oil196
and equip on an entity does not state if the equipment heats using oil or if oil is what is being heated.197

This is a provisional file, not the final typeset article 6

Fierro et al.

To mitigate this effect, Haystack defines “compound” tags. These are concatenations of existing tags198
into new atomic tags with specific semantics distinct from that of its constituents. For example, the199
hotWaterHeat compound tag is defined specifically as indicating that an air handler unit has heating200
capability using hot water. This trades composability — which tags can be used together — with consistency201
— an unambiguous definition for a set of tags. Haystack calls these “semantic conflicts”:202

“Another consideration is semantic conflicts. Many of the primary entity tags carry very specific203
semantics. For example the site tag by its presence means the data models a geographic site. So we204
cannot reuse the site tag to mean something associated with a site; which is why use the camel case205
tag siteMeter to mean the main meter associated with a site.[33]”206

The most common types of semantic conflicts concern process tags and substance tags. We explore how207
ambiguities arise for these two family of tags; §4 demonstrates how Brick handles these issues.208

Process Tags. For a metadata scheme to consistently describe a process, it must decompose a process209
into entities and capture how each entity relates to the process: does the entity monitor or control the210
process? Does it transport a substance or provide a means for two substances to interact?211

It is difficult for a limited dictionary of tags to capture unambiguously the family of concepts involved.212
Consider the case of an air handling unit that heats air by passing it around a coil of hot water. With a213
limited dictionary of tags, most of the entities (equipment and points) involved will be tagged with hot,214
heat, air and/or water. However, a flat set of tags does not permit any differentiation between concepts215
that share the same tags.216

Table 1 categorizes the intended usage of each Haystack tag containing the word “heat” (including217
“reheat”) or “cool.” Without this table or the Haystack documentation in hand, it is difficult to discern when218
to use a compound tag or several tags together: chilled+waterCooled, chilledWaterCool or219
chilled+water+cool? Furthermore, there is no formal, programmatically accessible form of the220
documentation that would allow this to be done in an automated fashion.221

Substance Tags. What constitutes sufficient and consistent descriptions of substances (such as water222
and air) depends upon the breadth of intended use. Existing building metadata systems do not model sub-223
stances directly; instead, they describe equipment and points in terms of what substances they manipulate,224
measure or utilize. Thus, an effective metadata scheme for substances must capture at least the nature of225
the relationship between substances, equipment and points.226

Flat tag structures lack the expressive power to make these distinctions unambiguous. To re-227
duce ambiguity, Haystack uses substance tags only on points and uses compound tags for equip-228
ment. For example hot water valve cmd and chilled water entering temp sensor229
use the water substance tag, but an air handler unit with a water-based chiller would use230
chilledWaterCool. This means that substance tags cannot be used to identify which points and231
equipment relate to a given substance. Furthermore, to perform such a query, a user would need232
to know the entire family of tags that relate to that substance. In the case of “water”, this list233
is water, waterCooled, waterMeterLoad, chilledWaterCool, chilledWaterPlant,234
hotWaterHeat, hotWaterPlant and hotWaterReheat, not to mention any user-defined tags.235
3.3 Lack of Composition Rules236

Haystack sacrifices composability of tags for more consistent interpretability, such as through the use237
of compound tags. Without a set of rules for how tags can be composed, there is no programmatic or238

Frontiers 7

Fierro et al.

automated mechanism to enforce or inform consistent usage of the tag dictionary. Haystack contains a239
small set of explicit rules, but largely relies upon idiom and human interpretation for consistency.240

Extending Tag Sets. In order to encourage consistent usage, metadata schemes need rules for generating241
new concepts and generalizing existing concepts. Rules for generating new concepts allow these concepts242
to be qualified by their relation to existing classes. Rules for generalizing existing concepts allow users (and243
programs) to reason about the behavior of a group of concepts. Formal mechanisms for generalization and244
specialization aid the discoverability, interpretability and extensibility of a metadata scheme. Unfamiliar245
concepts can be understood or referenced by their behavior or superclasses, and new concepts can be added246
seamlessly.247

sensor

temp sensor air sensor discharge
sensor

discharge
air sensor

discharge
air temp
sensor

discharge
air temp

discharge
temp sensor

temp airdischarge

air temp
sensor

Figure 1. The set of valid (blue + solid outline) and invalid (red + dashed outline) tagsets for a set of four
tags. The class hierarchy is established from top to bottom; subclass relationships are indicated by arrows.

Concepts in Haystack can be extended through annotation with additional tags; e.g. temp sensor248
refines the concept of sensor. However, tags cannot be freely combined (Figure 1). One mechanism for249
defining valid tag sets parameterizes existing tag sets with a choice from a set of mutually exclusive tags.250
Haystack explicitly defines several of these. Two examples from many:251

1. The heating method for an AHU, given by one of gasHeat, hotWaterHeat, steamHeat or252
gasHeat.253

2. The family of water meters recognized by Haystack can be differentiated by the tags domestic,254
chilled, condenser, hot, makeup, blowdown and condensate.255

Haystack also has many implicit rules for defining valid extensions to tag sets. Application of these256
rules largely depends upon domain knowledge – for example an entity will likely not have two distinct257
substance tags such as air and water – as well as informal idioms conveyed through documentation. An258
example of the latter is the convention that points (sensors, setpoints and commands) will have a “what”259
tag (e.g. air), a “measurement” tag (e.g. flow) and a “where” tag (e.g. discharge). However, this is260
not a hard and fast rule, and many of the tag sets in Haystack’s documentation break with this convention.261

This is a provisional file, not the final typeset article 8

Fierro et al.

Consequently, there is no clear notion of how concepts can be meaningfully extended or generalized, which262
limits the extensibility of Haystack.263

Modeling Choices. The lack of formal structures for constructing tag sets means that enforcement of264
consistency – choosing the same set of tags to represent the same concept – relies upon the conventions of265
industrial practice and the idioms of the Haystack community. As a result, there is substantial variation in266
how the same concept is modeled.267

One prominent example in Haystack is the choice of whether to model pumps and fans as equipment or as268
points. Although pumps and fans are equipment, in many BMS they are represented by only a single point269
(usually the speed or power level). Haystack’s documentation encourages simplifying the representation of270
such equipment under such circumstances:271

“Pumps may optionally be defined as either an equip or a point. If the pump is a VFD then it272
is recommended to make it an equip level entity. However if the pump is modeled [in the BMS] a273
simple on/off point as a component within a large piece of equipment such as a boiler then it is modeled274
as just a point.[34]”275

Complex predicates such as these complicate the querying of a Haystack model. In particular, exploratory276
queries have to take the family of modeling choices into account: to list all of the pumps in a Haystack277
model, it is not sufficient to only look for entities with the pump and equip tag.278

3.4 Impact on Consistency279

These issues with tag-based metadata inhibit extensibility and consistency at scale. Most Haystack models280
are designed to be used by small teams familiar with the site or sites at hand, so it is enough for these281
models to be self-consistent. As long as there is agreement on how to tag a given concept, the informality of282
the model is not as detrimental; most tag sets in Haystack make intuitive sense to domain experts. However,283
the lack of formalization — specifically, a lack of a formal class hierarchy and rules for composability and284
extensibility — presents issues for adoption as an industrial standard and basis for automated analysis and285
reasoning.286

In the next sections, we show that the tradeoff between composability and consistency is tied to the287
choice to use tags for annotation as well as definition. With an explicit and formal class hierarchy it is288
possible to design a system that exhibts the composability of simple tags, while retaining the consistency289
and extensibility of an ontology.290

4 DESIGN OF BRICK+
Although Brick [4] establishes a formal class hierarchy and a set of descriptive relationships, it lacks291
the structure for inference of classes from tags and exhibits a number of design issues that impede this292
development. This motivates the design of Brick+, a drop-in replacement ontology for Brick that extends293
the hierarchy of described concepts to include fine-grained semantic properties and defines an explicit294
mapping from Brick concepts to sets of tags. Together, these enable the programmatic interpretation of tag295
sets, therefore eliminating the consistency and interpretability issues inherent to a tags-only design (§3).296
In conjunction with the structured implementation (§5), the formal design of Brick+ also enables a suite297
of supporting tooling for the validation (§6), migration (§7) and construction (§5.3) of Brick+ metadata298
models.299

4.1 Limitations of Brick300

The design and implementation of Brick has several issues which inhibit formalizing the relationship301
between classes and tags.302

Frontiers 9

Fierro et al.

No formal equivalence between tag sets and classes. Brick models a class hierarchy using a special303
construction called a TagSet. A TagSet has a definition, a set of related tags, and a name composed of each304
of the tags concatenated together. The Brick ontology defines which tags are used with which TagSets, but305
fails to capture bidirectional equivalency between the two definitions. Brick can retrieve the tags associated306
with a TagSet, but given a set of tags, Brick cannot infer the set of possible TagSets.307

No modeling of function or behavior. The Brick class hierarchy relates different TagSets only by a308
“subclass” relationship; there is no semantic information to distinguish classes in terms of their behavior.309
The simple association of tags to TagSets also does not offer any semantic information. Enhancing the class310
definitions with more semantic information would increase the usability of Brick and the discoverability of311
concepts.312

Inconsistent modeling and implementation. The implementation of the Brick ontology consists of a313
set of Turtle2 files containing the ontology statements. These files are generated by a Python script that314
transforms an CSV-based specification into the Turtle syntax for RDF. This process is brittle, error-prone315
and difficult to test and extend.316

4.2 Overview of Brick+317

Brick+ has three components: a class lattice defining the family of equipment, points, locations, substances318
and quantities in buildings; a set of expressive relationships defining how entities behave and how they are319
connected, contained, used and located; and a family of tags defining the atomic attributes and aspects of320
entities321

The implementation of Brick+ relies upon the use of a semantic reasoner, piece of software that322
materializes the set of facts deduced through the application of the logical rules contained within an323
ontology. An important implementation factor is the language used to define the ontology: more expressive324
languages can significantly increase the runtime complexity of the reasoning process (decreasing the utility325
of the system in an applied context), whereas less expressive languages may not be able define the necessary326
rules. The formal specification of Brick+ uses the OWL DL language to define rules for the operation and327
usage of Brick+ and to achieve the desired runtime properties.328

4.3 Brick+ Class Lattice329

Brick+ organizes all concepts into a class structure rooted in a small number of high-level concepts.330
Brick defines this structure as a tree-based hierarchy; Brick+ refines this structure into a lattice. Both the331
lattice and the hierarchy are defined in terms of a “subclass” relationship (§2), but differ in how they define332
relationships between concepts. A class hierarchy captures how concepts can be specialized, but does not333
encode how these concepts behave and relate to one another. In contrast, a lattice captures how concepts334
can be composed from sets of properties. This offers greater flexibility in the definition of concepts in335
Brick+ and facilitates the tag decomposition and mapping to Haystack detailed in §5.336

Brick+ has six primary concepts. Point is the root class for all points of telemetry and actuation. There337
are six immediate subclasses of Point categorized by the high-level semantics of how each point behaves:338

• Sensor points are outputs of transducers recording the state of the physical world, e.g. Air339
Temperature Sensor340

• Setpoints points are control points used to guide the operation of a feedback-driven control system,341
e.g. Air Flow Setpoint342

2 https://www.w3.org/TR/turtle/

This is a provisional file, not the final typeset article 10

https://www.w3.org/TR/turtle/

Fierro et al.

• Command points are control points that directly affect the state of equipment, e.g. Fan Speed343
Command344

• Status points report the current logical status of equipment, e.g. Damper Position Status345

• Alarm points are high-priority indicators conveying non-nominal behavior, e.g. Water Loss346
Alarm347

• Parameter points are configuration settings used to guide the operation of equipment and control348
systems, e.g. Max Air Flow Setpoint.349

Brick+ refines the design of the Brick ontology to differentiate between parameters and setpoints. This350
avoids conflating the concepts of the minimum and maximum setpoints used in deadband control (such351
as to configure a thermostat to maintain a temperature within that band) and the minimum and maximum352
allowed values for a setpoint (for example to place a lower bound on permitted air flow setpoints).353

Equipment is the root class for the lattice of mechanical equipment used in a building. The Brick+354
equipment lattice covers equipment for HVAC, lighting, electrical and water subsystems. Brick+ extends355
the modeling of equipment in Brick to include how classes of equipment relate to substances and processes356
in the building.357

Location is the root class for the lattice of spatial elements of a building. The lattice includes physical358
elements such as floors, rooms, hallways and buildings as well as logically-defined physical extents such as359
HVAC, lighting and fire zones.360

Substance is the root class for the lattice of physical concepts that are measured, monitored, controlled361
and manipulated by building subsystems. Examples of physical substances are air, water and natural gas.362
These can be further subclassed by their usage within the building, for example “mixed air” is a subclass of363
“air” that refers to the combination of outside and return air in an air handler unit.364

Quantity is the root class for the lattice of quantifiable properties of substances and equipment.365
Examples of physical properties include temperature, conductivity, voltage, luminance and pressure.366
Subclassing quantities enables differentiation between types of quantities, such as between Dry Bulb367
Temperature and Wet Bulb Temperature.368

Tag is a root class for the flat namespace of atomic tags supported by Brick+. The majority of these tags369
are drawn from the Haystack tag dictionary, and are instances of the Tag class.370

4.4 Brick+ Relationships371

Relationships express how entities and concepts can be composed with one another; this is key to372
the consistent and extensible usage of Brick+. For entities – the “things” in a building – composition373
encapsulates functional relationships such as monitoring, controlling, manipulation, sequencing within a374
process, and physical and logical encapsulation. Concepts are identified by classes and are organized into a375
lattice by relationships.376

As in Brick, relationships in Brick+ exist between a subject (the entity possessing the relationship’s377
indicated property) and an object (the entity that is the target of the property). Brick+ defines a set of378
constraints for each relationship to ensure correct and consistent usage between subject and object entities,379
without constraining the application of the relationship to yet unknown scenarios.380

All Brick relationships have at least one domain or range constraint determining the allowed classes for381
the subject or object. Domain constraints limit the class of entities that can be the subject of a relationship;382
range constraints limit the class of entities that can be the object of a relationship. Brick defines domains and383

Frontiers 11

Fierro et al.

Relationship Definition Domain Range Inverse Transitive?
hasLocation Subject is physically located in the object

entity
* Location isLocationOf yes

feeds Subject conveys some media to the object
entity in some sequential process

Equipment Equipment isFedBy no
Equipment Location

hasPoint Subject has a monitoring, sensing or
control point given by the object entity

Equipment Point isPointOf no
Location Point

hasPart Subject is composed – logically or
physically – in part by the object entity

Equipment Equipment isPartOf yes
Location Location

measures Subject measures a quantity or substance
given by the object entity

Sensor Substance no
Sensor Quantity no

regulates Subject informs or performs the regulation
of the substance given by the object entity

Setpoint Substance no
Equipment Substance

hasOutputSubstance Subject produces or exports the object
entity as a product of its internal process

Equipment Substance no

hasInputSubstance Subject receives the object entity to con-
duct its internal process

Equipment Substance no

Table 2. List of high-level relationships supported by Brick+.

ranges of relationships in terms of classes from the lattice. Brick+ supports these definitions (enumerated384
in Table 2) and extends them such that domains and ranges can be defined in terms of the properties of385
the subject and object, rather than which sublattice they belong to. This allows the definition of more386
fine-grained sub-relationships with additional semantics.387

For example, as in Table 2, the feeds relationship indicates the passage of some substance between388
two pieces of equipment or between an equipment and a location. If the subject of the feeds relationship389
has the property that it outputs air, then the feeds relationship can be specialized to the feedsAir390
sub-relationship.391

4.5 Brick+ Tags392

Brick+ addresses the consistency and interpretability issues of tag-based metadata by explicitly binding393
Brick classes to sets of tags. In Brick, classes are human-interpretable because they have clear textual394
definitions; in Brick+, classes are additionally programmatically-interpretable because they are identified395
by their position in the class lattice and by the set of properties that define their behavior. Clear definitions396
promote consistent usage.397

Binding classes to tag sets effectively bounds the family of possible tag sets to those that have clear398
definitions. This removes the burden of definition, validation and interpretation from the tag structure by399
outsourcing it to the class lattice, which permits the inference of Brick+ classes from unstructured Haystack400
tags.401

Although Brick also defines tags, Brick+ advances the implementation in several ways. Firstly, Brick+402
removes the need for tags to be lexically contained within the name of the class (the “TagSet” construct in403
Brick). This decoupling allows the definition of classes beyond what can be assembled through concatena-404
tion of tags, or classes that do not have a straightforward tag decomposition; for example, a Rooftop Unit405
equipment in Haystack has the rtu tag.406

Secondly, Brick+ encodes tags so they can be inferred from a Brick+ class and vice versa, even if a given407
entity’s definition is given only by one or the other. Figure 2 illustrates three different methods for instanti-408
ating an Air Temperature Sensor demonstrating the flexibility of the Brick+ implementation. The409
classification of an entity can be performed explicitly using the a or rdf:type predicate in conjunction410
with a Brick class, implicitly through annotating an entity with the set of tags equivalent to a Brick class,411
descriptively by annotating an entity with its behavioral properties, or through a combination of these.412

This is a provisional file, not the final typeset article 12

Fierro et al.

1 # instantiate class explicitly
2 :sensor1 a brick:Air_Temperature_Sensor .
3
4 # instantiate a class implicitly through application of tags
5 :sensor1 brick:hasTag tag:Air .
6 :sensor1 brick:hasTag tag:Temp .
7 :sensor1 brick:hasTag tag:Sensor .
8
9 # combination of explicit class and tags

10 :sensor1 a brick:Temperature_Sensor .
11 :sensor1 brick:hasTag tag:Air .
12
13 # instantiation from behavior
14 :sensor1 a brick:Sensor .
15 :sensor1 brick:measures brick:Air .
16 :sensor1 brick:measures brick:Temperature .
17
18 # alternative instantiation from behavior
19 :sensor1 a brick:Temperature_Sensor .
20 :sensor1 brick:measures brick:Air .

Figure 2. Five equivalent methods of declaring sensor1 to be an instance of the Brick Air
Temperature Sensor class.

1 brick:Supply_Air_Temperature_Sensor a owl:Class ;
2 rdfs:subClassOf brick:Air_Temperature_Sensor ;
3 rdfs:subClassOf [owl:intersectionOf (
4 [a owl:Restriction ; owl:hasValue tag:Sensor ;
5 owl:onProperty brick:hasTag]
6 [a owl:Restriction ; owl:hasValue tag:Temperature ;
7 owl:onProperty brick:hasTag]
8 [a owl:Restriction ; owl:hasValue tag:Air ;
9 owl:onProperty brick:hasTag]

10 [a owl:Restriction ; owl:hasValue tag:Supply ;
11 owl:onProperty brick:hasTag])],
12 [owl:intersectionOf (
13 [a owl:Restriction ; owl:hasValue brick:Temperature ;
14 owl:onProperty brick:measures]
15 [a owl:Restriction ; owl:hasValue brick:Supply_Air ;
16 owl:onProperty brick:measures])] .

Figure 3. OWL DL-compatible definition of the Brick Supply Air Temperature Sensor class
showing the explicit class structure, tag equivalence and the use of substance and quantity classes to model
behavior

Figure 4 illustrates how tags, classes and properties define the lattice for some subclasses of the413
Sensor class. Figure 3 shows the implementation of the Supply Air Temperature Sensor414
class: line 2 defines how Supply Air Temperature Sensor figs into the Brick class lattice.415
Lines 4-17 defines the Supply Air Temperature Sensor class as equivalent to entities that416
have the sensor, temperature, air and supply tags. Lines 18-25 define the Supply Air417
Temperature Sensor class as equivalent ot entities that measure the Temperature property of the418
Supply Air substance.419

Frontiers 13

Fierro et al.

Sensor

Temp
Sensor

Air
Sensor

measures
temp

measures
air

Air	Temp
Sensor

measures
air	temp

measures
air	temp

Supply	Air	
Temp	Sensor

Return	Air	
Temp	Sensor

measures
supply	air	
temp

measures
return	air	
temp

sensor

Temp,
Sensor

Air,Temp,
Sensor

Supply,Air,
Temp,Sensor

Return,Air,
Temp,Sensor

Air,
Sensor

Figure 4. Portion of Brick+ class lattice illustrating the equivalence between tags and classes. Edges
indicate which properties are added to each concept (class) to produce a new class. Reverse edges (not
pictured) are the subclass relationships.

4.6 Brick+ Substances and Quantities420

Brick+ defines a lattice of substances and quantities that can be used to describe the functionality of421
equipment and points. This permits inference of more fine-grained semantic information from existing422
Brick models and allows equipment and points to be classified by their behavior rather than by explicit423
classification.424

The Brick+ substance class lattice is based upon the hierarchy developed by Project Haystack. It classifies425
substances by phase of matter (Gas, Liquid, Solid) and supports substances qualified by their usage426
within a process: Air is a subclass of Gas, and Outside Air and Mixed Air are subclasses of Air.427
This construction can be extended to include new substances and subclasses of those substances as used in428
different processes.429

A key principle of the Brick+ implementation is every property associated with a class must be inferrable430
from instances of that class. Properties associated with classes include the set of tags that are equivalent to431
the class (indicated by the hasTag relationship) and the behavioral annotations of the class (indicated by432
relationships like measures).433

5 BRICK+ IMPLEMENTATION
Recall that the Brick+ class lattice models concepts by their behavior and related tags as well as by explicit434
subclass relationships. The lattice is defined by a family of relationships which are supported by a set of435
constraints that ensure correct and consistent usage between subject and object entities without constraining436
the application of the relationship to yet unknown scenarios. This enables Brick+ to define a formal437
mapping from Haystack’s informal tags to formal Brick classes.438

To facilitate the development, testing and debugging of Brick+, we created a Python framework that439
interprets a structured and extensible abstract ontology specification into a Turtle-based implementation.440
The framework is open source and available online3. The implementation of the inference engine described441
in §5 and the validation tool described in §6 are published as part of the open source brickschema442

3 https://github.com/BrickSchema/Brick

This is a provisional file, not the final typeset article 14

https://github.com/BrickSchema/Brick

Fierro et al.

Python package4. The migration tool described in §7 is distributed as part of the Brick+ source code, and is443
also open source.444

This section presents an overview of the implementation of the Brick+ ontology with a focus on the445
implementation of substances and the inference procedure for converting Haystack tags to Brick classes.446

5.1 Substance Implementation447

The inferred properties concerning substances are more complex to account for the differences in usage.448
Because substances are classes, it is possible to associate instances of substances with Brick entities.449
This association helps applications model how entities behave in relation to the same substance instance.450
For example, a Mixed Air Temperature Sensor and a Mixed Air Damper could be related451
through their respective measurement and regulation of the same instance of Mixed Air. However, if a452
shared instance is not given in the definition of the Brick model, an OWL DL reasoner cannot infer the453
instantiation of an appropriate substance. Brick+ solves this with punning [41].454

Punning is a mechanism by which a class name can represent a canonical instance of that class. This455
allows an OWL DL reasoner can relate a punned substance to a property of an equipment or point.456
Importantly, this does not prohibit the instantiation of substance instances if and when a Brick model457
supplies those. Line 15 of Figure 2 contains an example of an inferred substance for instances of the458
brick:Air Temperature Sensor class.459

5.2 Formalizing the Tag-Class Equivalence460

There are several possible approaches for formalizing the mapping between tag sets and classes, each461
with non-obvious tradeoffs. Fundamentally, the formalization has to grapple with the same issue captured462
in Definition 3.1. The use of the subset relationship between the set of tags describing an entity and the463
set of tags defining a class can produce ambiguous or erroneous results. In fact, the process described in464
Definition 3.1 is only sufficient if there is no pair of disjoint classes whose tags are a subset of each other.465
This implies that under such semantics the only permitted subset relationships between tag sets are those466
that also obey the subclass relationship between the corresponding classes.467

To see why this is the case, consider the following (informal) definitions:468

• All Setpoint classes are disjoint from all Parameter classes; that is, the set of instances of the469
Setpoint type is disjoint with the set of instances of the Parameter type.470

• The Air Flow Setpoint class (a subclass of Setpoint) is defined by the tags air, flow and471
setpoint.472

• The Supply Air Flow Setpoint class (a subclass of Setpoint) is defined by the tags473
supply, air, flow and setpoint.474

• The Max Air Flow Setpoint Limit class (a subclass of Parameter) is defined by the tags475
max, air, flow, setpoint and limit.476

The tags for Air Flow Setpoint are a subset of the tags of both Supply Air Flow477
Setpoint and Max Air Flow Setpoint Limit. The former is permissible because Supply478
Air Flow Setpoint is a subclass of Air Flow Setpoint. However, the subset relationship in-479
correctly implies that Max Air Flow Setpoint Limit is a subclass of Air Flow Setpoint,480
which is a violation of the disjoint relationship between their respective parent classes (Parameter and481

4 https://brickschema.readthedocs.io/

Frontiers 15

https://brickschema.readthedocs.io/

Fierro et al.

Setpoint). The primary challenge in formalizing the mapping between tag sets and classes is how to482
overcome this limitation with respect to the following constraints:483

1. Build on the RDF data model and OWL ontology language. The mapping between tag sets and484
classes should be expressed in the RDF data model for compatibility with the existing entities,485
annotations and properties already defined in the Brick+ ontology. Additionally, inferring a class486
from a set of tags (and vice versa) should be possible through the mechanisms in the OWL ontology487
language, i.e. via a reasoning engine. This keeps the formalism consistent with the design of the488
ontology and the mapping to the space of tags that Brick+ incorporates and also minimizes the amount489
of external machinery required to make use of the developed mappings.490

2. The set of tags mapped to a class should be sensible. There is a strong usability argument for491
maintaining a “sensible” set of tags that maps to each class; a “sensible” set of tags is defined as a492
set of tags that “makes sense.” This may include the descriptive terms in the class name or words493
commonly associated with the class concept. Importantly the interpretability of a “sensible” set of tags494
does not depend on the large class structure. As long as the set of tags for every class is unique, the495
mapping developed here is sound.496

However, developing a “sensible” mapping that can be expressed in RDF and that is supported by497
OWL-based inference is a tricky task. Because the Brick+ formal model is built on the set logic of OWL, a498
naive approach to designing a mapping between tags and classes quickly encounters the tension between499
tag set overlap and the disjointness of the class hierarchy described above. It is tempting to design the500
tag sets associated with classes in a manner that sidesteps this issue; for example, one could define501
the tags associated with Max Air Flow Setpoint Limit to be max, air, flow and limit502
(excluding setpoint) to avoid the logical violation given by the subsumption of the tags for Air Flow503
Setpoint. This is possible due to the perscriptive nature of the mapping, but it may feel unnatural to504
users of Brick+ to avoid the setpoint tag when describing a concept related to a setpoint, even if the505
concept itself is not a setpoint.506

How, then, can both properties be achieved in the same design? The current understanding of the authors507
is that implementing a sensible mapping is fundamentally incompatible with a solution expressed entirely508
in the set logic of OWL. A full proof of this assertion is beyond the scope of this paper, but we present509
the essential intuition in the course of explaining the design and implementation of the Brick+ tag-class510
mapping below.511

The tag-class mapping in Brick+ decouples the informal specification of which tags are associated with512
which classes from how this mapping is formalized in the ontology. This allows the two representations to513
evolve independently. The Brick+ generation framework incorporates a list of tags for each defined class.514
A set of unit tests verifies that there is a unique set of tags for each class in the Brick+ class hierarchy and515
raises a warning to the developer if this is not the case. Invoking the framework generates Brick+ ontology,516
including the tag-class mapping. We discuss each direction of the mapping separately below.517

Class to Tag Set Mapping: The Brick+ ontology defines a hasTag property which associates an entity518
(an instance of a class) with a tag. The mapping must enable the population of the appropriate hasTag519
properties for each instance of a Brick+ class. The key construct in the modeling approach involves the520
use of OWL Restriction classes (marked by owl:Restriction); these are an OWL construct which521
defines the members of a class as those that possess certain properties. Brick+ defines a Restriction class522
for each tag in the ontology that, by definition, counts its members as those entities that possess the given523
tag. The Restriction classes enable a semantic reasoner to generate a hasTag property with a given tag524

This is a provisional file, not the final typeset article 16

Fierro et al.

1 # OWL Restriction definition
2 _:has_Temperature a owl:Restriction ;
3 owl:hasValue tag:Temperature ;
4 owl:onProperty brick:hasTag .
5
6 # model statement
7 example:thing a _:has_Temperature .
8
9 # generated by the reasoner

10 example:thing brick:hasTag tag:Temperature .

Figure 5. An example of an OWL Restriction class encoding the association with the Temperature tag
in Brick.

for each member of the class. Figure 5 demonstrates this mechanism: lines 2-4 contain the definition of a525
Restriction class for the Temperature tag. Line 7 declares an entity as an instance of the Restriction526
class; this allows a semantic reasoner to produce the association with the tag as captured on line 10.527

Brick+ represents the set of tags associated with a class as the intersection of each of the constituent528
Restriction classes. The intersection is realized as a class formed by the owl:intersectionOf property.529
Lines 3-11 of Figure 3 contain an example of this construction. By definition, the intersection class has as530
its members the set of entities that fulfill the requirements of each of the constituent tag Restriction classes531
— that is, the set of entities that have the required tags. This construction means that any entities declared to532
be instances of this intersection class can, through the application of a semantic reasoner, have the required533
tags automatically associated.534

The last piece of the implementation involves how to associate a Brick+ class with the anonymous535
intersection class that represents the set of tags (referred to as a tag set class). There are two available536
approaches: marking the Brick+ class as a subclass of the tag set class, or marking the Brick+ class as equiv-537
alent to the tag set class. Marking the tag set class as equivalent (using the owl:equivalentClass538
property) is not sufficient because it captures entities with a superset of the required tags; this is exactly539
the logical violation problem described above. Therefore, we use the other approach. Brick+ encodes a540
Brick+ class as a subclass (using the RDFS subClassOf property) of the tag set class. This means that541
an entity declared to be a member of a Brick+ class will inherit membership of each of the Restriction542
classes in the tag set class construct; the application of a semantic reasoner can then populate the required543
tag associations.544

Tag Set to Class Mapping: Encoding the mapping from a set of tags to a Brick+ class requires reasoning545
about what tags an entity does not have in addition to which tags it does have. This is incompatible with546
the open world assumption [36], which is employed by the underlying set logic of OWL. Informally, the547
open world assumption tells us that a statement may be true regardless of whether or not that statement548
is included in a given knowledge base. In the context of tag-class mapping, the open world assumption549
means that the absence of a tag on an instance cannot be interpreted as the instance not having that tag;550
that statement may exist elsewhere. A deeper discussion about the utility of the open world assumption551
in the context of buildings — where a knowledge base may indeed be the authoritative data source — is552
beyond the scope of this paper and is the subject of ongoing work. To circumvent this issue, the tag set to553

Frontiers 17

Fierro et al.

1 id: 'd83664ec RTU-1 OutsideDamper'
2 air: X
3 cmd: X
4 cur: X
5 damper: X
6 outside: X
7 point: X
8 regionRef: '67faf4db'
9 siteRef: 'a89a6c66'

10 equipRef: 'd265b064'

Figure 6. Original Haystack entity from the Carytown reference model

1 :d83664ec brick:hasTag tag:Command . # cmd
2 :d83664ec brick:hasTag tag:Damper .
3 :d83664ec brick:hasTag tag:Outside .
4 :d83664ec brick:hasTag tag:Point .

Figure 7. Intermediate RDF representation of the Haystack entity; Haystack software-specific tags (e.g.
cur, tz) are dropped.

1 :d83664ec_point brick:hasTag tag:Damper .
2 :d83664ec_point brick:hasTag tag:Command .
3 :d83664ec_point a brick:Damper_Position_Command . # inferred
4 :d83664ec_equip brick:hasTag tag:Air .
5 :d83664ec_equip brick:hasTag tag:Outside .
6 :d83664ec_equip brick:hasTag tag:Damper .
7 :d83664ec_equip a brick:Outside_Damper . # inferred
8 :d83664ec_point brick:isPointOf :d83664ec_equip . # inferred
9 :d83664ec_point brick:isPartOf :d265b064 # inferred

Figure 8. Brick inference engine splits the entity into two components: the explicit point and the implicit
outside damper equipment.

class mapping in Brick+ is accomplished using a simplified version of the inference procdure described in554
§5.3. The implementation is captured in the external brickschema Python package5.555

5.3 Brick-Haystack Inference Procedure556

In order to apply the Brick+ inference to Haystack entities, some preprocessing is required. Firstly,557
the engine filters out Haystack tags that do not contribute to the definition of the entity, including data558
historian configuration (hisEnd, hisSize, hisStart), current readings (curVal) and display names559
(disMacro, navName). Figure 6 shows an example of a “cleaned” Haystack entity containing only the560
marker and Ref tags from the Carytown reference model.561

Next, the engine transforms the Haystack entity into an RDF representation that can be understood by the562
inference engine. The engine translates each of the marker tags into their canonical Brick form: for example,563
Haystack’s sp becomes Setpoint, cmd becomes Command and temp becomes Temperature. The564
engine creates a Brick entity identified by the label given by the Haystack id field, and associates each of565
the Brick tags with that entity using the brick:hasTag relationship. Figure 7 contains the output of this566
stage executed against the entity in Figure 6.567

5 https://brickschema.readthedocs.io/

This is a provisional file, not the final typeset article 18

https://brickschema.readthedocs.io/

Fierro et al.

At this stage, the engine naı̈vely assumes a one-to-one mapping between a Haystack entity and a Brick568
entity. This is usually valid for equipment entities which possess the equip tag, but Haystack point entities569
(with the point tag) may implicitly refer to equipment that is not modeled elsewhere. Figure 6 is an570
example of a Haystack point entity that refers to an outside air damper that is not explicitly modeled in the571
Haystack model. The last stage of the inference engine performs the “splitting” of a Haystack entity into an572
equipment and point.573

First, the inference engine attempts to classify an entity as an equipment. The engine temporarily replaces574
all point-related tags from an entity – Point, Command, Setpoint, Sensor – with the Equipment575
tag, and finds Brick classes with the smallest tag sets that maximize the intersection with the entity’s576
tags. This corresponds to the most generic Brick class. In our running example, the inference engine577
would transform the entity in Figure 7 to the tags Damper, Outside and Equipment. There are 12578
Brick classes with the Damper tag, but only one class with both the Damper and Outside tags; thus,579
the minimal Brick class with the maximal tag intersection is Outside Air Damper. If the inference580
engine cannot find a class with a non-negligable overlap (such as the Equipment tag), then the entity is581
not equipment.582

Secondly, the inference engine attempts to classify the entity as a point. In this case, the engine does583
not remove any tags from the entity, and finds the Brick classes with the smallest tag sets that maximize584
the intersection with the entity’s tags. In our running example, the minimal class with the maximal tag585
intersection is Damper Position Command.586

Figure 8 contains the two inferred entities output by this methodology. In the case where a Haystack587
entity is split into an eqiupment and a point, the Brick inference engine associates the two entities with588
the brick:isPointOf relationship (line 10 of Figure 8). Additionally, the inference engine translates589
Haystack’s Ref tags into Brick relationships using the simple lookup-table based methodology established590
in [5]. The inference engine applies these stages to each entity in a Haystack model; the union of the591
produced entities and relationships constitutes the inferred Brick model.592

6 BRICK+ VALIDATION
While the formal definition of the Brick+ ontology enables the exact specification of concepts and the593
relationships between them, it does not directly provide a means for validating correct or idiomatic usage594
within a model. Recall that a Brick+ model (sometimes referred to as an instance of Brick+) is an RDF595
graph that uses the Brick+ ontology to represent and describe the entities and relationships within a596
building.597

We begin by defining correct and idiomatic usage of the Brick+ ontology and provide examples of598
where the need for such validation arises in practice. We then show how we apply the SHApes Constraint599
Language to this task by defining “shapes” that encode correct and idiomatic practices. Finally, we describe600
the implementation of the Brick+ validation library and tool.601

The implementation and execution of Brick+ validation is made possible because of the formalization of602
the underlying model. In Brick and Haystack, the lack of formal rules means that there is no specification603
of what “correct” or “idiomatic” usage looks like — this must instead be determined through forum posts604
and human-readable documentation. Brick+ advances the state-of-the-art of building metadata by enabling605
such a validation process to be performed and in an automatic manner.606

Frontiers 19

Fierro et al.

1 brick:isPointOf a owl:ObjectProperty ;
2 rdfs:domain brick:Point ;
3 owl:inverseOf brick:hasPoint .
4
5 brick:Point a owl:Class ;
6 owl:disjointWith brick:Equipment .
7
8 building:ahu1 a brick:Equipment .
9 building:vav1 a brick:Equipment .

10 building:ahu1 brick:isPointOf building:vav1 .

Figure 9. An example of a logical violation in an instance of a Brick+ model.

6.1 The Role of Validation607

We define correct usage of an ontology to mean that the terms and properties defined in the ontology are608
used appropriately within an instance and do not result in any logical violations of the formal model. For609
example, consider the set of RDF statements in Figure 9. Lines 1-6 are a partial implementation of the610
Brick+ ontology. Lines 1-3 specify that any subject of the brick:isPointOf property is implied to611
be an instance of the brick:Point class. lines 5-6 state that the set of instances of brick:Point is612
disjoint with the set of instances of brick:Equipment; that is, no entity can be both a Point and an613
Equipment.614

We now turn to the definition of a violating Brick+ model. Lines 8 and 9 define two pieces of equipment615
(we use the high-level brick:Equipment for illustrative purposes; in reality these instances would be616
members of more specific, descriptive classes within the Brick+ Equipment class lattice). Line 10 introduces617
the logical violation: the use of the brick:isPointOf property implies that building:ahu1 is618
a member of brick:Point which conflicts with the statement on line 8 that building:ahu1 is a619
member of the disjoint class brick:Equipment. Note that without external information — such as the620
domain knowledge that an entity named “ahu1” is likely an air handling unit and thus an equipment — it is621
impossible to tell which statement is erroneous.622

Idiomatic usage of an ontology such as Brick+ differs from correct usage in that idiomatic violations are623
still logically valid. Instead, such violations are failures to meet structural and organizational expectations.624
The specification of modeling idioms is essential for normalizing the use of an ontology to a higher degree625
than can reasonably be provided by the ontology definition itself. Because the Brick+ ontology is meant626
to generalize to many different kinds of buildings, subsystems, equipment and organizations thereof, the627
ontology definition makes very few statements about what information is required to be present in a given628
building instance for it to be considered valid. Idioms fill this gap by encoding “best practices” of what629
should be contained in a given model.630

Modeling idioms are diverse in form because they can fulfill many roles. For example, modeling idioms631
may include the expectation that632

• all VAVs in an instance should refer to an upstream AHU and a downstream HVAC zone633

• all VAVs of a particular make and model should have five associated monitoring and control points634

• all temperature sensors should be reporting in Celsius635

Because modeling idioms are not tied directly to the formal definition Brick+, their enforcement is not a636
requirement for the usage of Brick+. We expect modeling idioms to be defined, distributed and applied on637

This is a provisional file, not the final typeset article 20

Fierro et al.

1 bsh:isPointOfDomainShape a sh:NodeShape ;
2 sh:targetSubjectsOf brick:isPointOf ;
3 sh:message "Subject of isPointOf should be an instance of Point" ;
4 sh:class brick:Point .
5
6 bsh:hasPointRangeShape a sh:NodeShape ;
7 sh:targetSubjectsOf brick:hasPoint ;
8 sh:property [
9 sh:class brick:Point ;

10 sh:message "Object of hasPoint should be an instance of Point" ;
11 sh:path brick:hasPoint] .

Figure 10. SHACL shapes defining correct usage of the brick:isPointOf and brick:hasPoint
relationships

a per-project or per-building basis; in the future, equipment manufacturers may distribute Brick+-encoded638
modeling idioms for how their equipment should be represented in a Brick+ model.639
6.2 Brick+ Validation with SHACL640

The abstract Brick specification described in §5 lends a means to generate constraints enforcing correct641
and/or idiomatic usage. These constraints are defined using the SHApes Constraint Language (SHACL [21]),642
a W3C standard for validating RDF graphs against a set of conditions or constraints. The SHACL standard643
comprises a specification for a shapes graph, an RDF graph containing the constraint definitions —644
including but not limited to expected properties, values and types associated with properties and arity of645
properties — and a method for verifying if a target RDF graph meets those constraints.646

A shapes graph contains a collection of shapes. A shape consists of a list of constraints and a target647
declaration which specifies which node or group of nodes the constraints apply to. SHACL constraints648
have many forms; rather than review the full range of possibilities (we refer the reader to [21] for detailed649
documentation on SHACL), we concentrate on the two main categories of SHACL shapes used in Brick+650
validation: relationship shapes and class shapes.651

Relationship shapes are constraints that validate use of Brick+ relationships enumerated in Table 2.652
There is one shape for each domain and range property defined for each Brick+ relationship. The domain653
and range properties (denoted by rdfs:domain and rdfs:range) imply the class of the subject and654
object of the relationship, respectively. Validating against relationship shapes can alert authors of Brick+655
models of potential logical violations (see Figure 9).656

Figure 10 contains two relationship shape definitions for the inverse relationships brick:isPointOf657
and brick:hasPoint. The top shape — bsh:isPointOfDomainShape, lines 1-4 — demonstrates658
the typical structure of a shape constraining the class of a relationship’s subject. The implementation659
in SHACL is straightforward: line 2 indicates that the shape targets all nodes which are subjects of the660
brick:isPointOf relationship. The targeted nodes are called the focus nodes in SHACL parlance.661
Line 4 indicates that the focus node’s class should be brick:Point.662

The bottom shape — bsh:hasPointRangeShape, lines 6-11 — demonstrates the typical shape663
structure for constraining the type of the object of a relationship. Line 7 indicates that the shape targets all664
nodes which are subjects of the brick:hasPoint relationship. The composite structure on lines 8-11665
states that the objects of the brick:hasPoint relationship should have the class brick:Point.666

Frontiers 21

Fierro et al.

1 bsh:vavRelationshipShape a sh:Nodeshape ;
2 sh:targetClass brick:Variable_Air_Volume_Box ;
3 sh:property [
4 sh:path brick:feeds ;
5 sh:message "VAV boxes should feed an HVAC Zone" ;
6 sh:class brick:HVAC_Zone] ;
7 sh:property [
8 sh:path brick:isFedBy ;
9 sh:message "VAV boxes should be fed by an AHU" ;

10 sh:class brick:Air_Handler_Unit] .

Figure 11. A SHACL shape encoding the idiom that a VAV must be interposed between an AHU and an
HVAC Zone through the use of the brick:feeds property

1 bsh:modelXYZ_VAVSHape a sh:Nodeshape ;
2 sh:targetClass brick:Model_XYZ_VAV ;
3 sh:property [
4 sh:path brick:hasPart ;
5 sh:message "Model XYZ VAVs must have a damper" ;
6 sh:class brick:Damper] ;
7 sh:property [
8 sh:path brick:hasPoint ;
9 sh:message "Model XYZ VAVs must have a supply air temp sensor" ;

10 sh:class brick:Supply_Air_Temperature_Sensor] ;
11 sh:property [
12 sh:path brick:hasPoint ;
13 sh:message "Model XYZ VAVs must have a heating temp setpoint" ;
14 sh:class brick:Heating_Temperature_Setpoint] ;
15 sh:property [
16 sh:path brick:hasPoint ;
17 sh:message "Model XYZ VAVs must have a cooling temp setpoint" ;
18 sh:class brick:Cooling_Temperature_Setpoint] ;
19 sh:property [
20 sh:path brick:hasPoint ;
21 sh:message "Model XYZ VAVs must have an air flow sensor" ;
22 sh:class brick:Supply_Air_Flow_Sensor] ;
23 sh:property [
24 sh:path brick:hasPoint ;
25 sh:message "Model XYZ VAVs must have an air flow setpoint" ;
26 sh:class brick:Supply_Air_Flow_Setpoint] .

Figure 12. A SHACL shape encoding the required parts and points for a theoretical “Model XYZ” variable
air volume box.

Class shapes specify conditions on the properties and property values for a Brick+ class. Correspondingly,667
the focus nodes for a class shape are the set of instances of that class. We expect that most idiomatic shapes668
will be class shapes.669

Figure 11 contains an example of an idiomatic class shape that encodes the requirement that all670
VAVs in a model instance must refer to a downstream HVAC zone and an upstream air handling671
unit. Validating a Brick+ model instance against this shape involves examining all of the instances672
of brick:Variable Air Volume Box and its subclasses to see if the required properties exist and if673
the objects of those properties fulfill the class requirements.674

This is a provisional file, not the final typeset article 22

Fierro et al.

Figure 12 is an example of a shape encoding the expected parts and points for a theoretical variable air675
volume box of a particular make and model. Applying this shape to a Brick+ model instance can help676
ensure that all instances of the equipment are modeled consistently.677

Unlike the shapes in Figure 10, the shapes in Figure 11 and Figure 12 are not required for correct usage678
of Brick. Instead, adherence to these shapes might be a commissioning requirement for the Brick+ model679
produced for a site.680

6.3 Implementation681

We now describe how we have incorporated the SHACL standard into the development and usage of682
Brick+.683

The abstract specification of Brick+ developed in §5 allows us to automatically generate relationship684
shapes for verifying correct usage of Brick relationships. There are currently 23 relationship shapes685
distributed with Brick+, but we expect this number will increase over time as the number of relationships686
and properties supported by Brick+ expands. These shapes are included as part of the Brick+ distribution687
and are organized under the abstract RDF namespace https://brickschema.org/schema/1.1/688
BrickShape, commonly abbreviated as bsh.689

To perform validation of a model instance, we incorporate the excellent open-source PySHACL library [2]690
into a Brick-specific software module and augment it with some features specific to Brick+. The module691
exposes the validation functionality through a command-line tool, brick validate, as well as a Python692
library. Shapes for validating correct usage of Brick+ are included in the library so validation against these693
shapes is always performed by default, without any additional configuration.694

The primary feature offered by the Brick+ validation software module is a post-processing step applied695
to the output of the underlying PySHACL module. When the PySHACL validation process is complete,696
the Brick+ validation software attempts to find the offending triples and relevant context within the model697
instance. The software can then provide suggestions for how to repair the model to pass validation.698

6.4 Evaluation of Validation Tool699

To evaluate the efficacy of the validation approach and tools, we applied the Brick+ validation module to700
five reference models from the original Brick release [4]. Each of the models was converted to the Brick+701
edition of Brick through the migration process described in §7. The validation process found correctness702
violations in each graph, including:703

• Incorrect type of subject or object as required by the property: this is one type of error that can be704
found through the application of relationship shapes705

• Incorrect use of a relationship; for example, brick:hasLocation is used where706
brick:hasPart is more appropriate.707

• Using a class declared to be in the Brick+ namespace that is not actually defined in the official Brick+708
release: this may not be a severe violation because we do expect that ad-hoc extensions to the Brick+709
ontology will take place “in the field”, but it is good to raise a warning that potentially unsupported710
classes exist in a model instance711

• Failure to declare a type for an entity: this is an example of a correctness constraint that does not fall712
under the relationship shapes defined above713

Validation of Brick model instances has long been a desired feature, but has been difficult to implement714
due to the lack of formalization of the Brick model itself. The introduction of Brick+ and its abstract715
specification makes description of correct and idiomatic usage natural to express as “shapes” within the716

Frontiers 23

https://brickschema.org/schema/1.1/BrickShape
https://brickschema.org/schema/1.1/BrickShape
https://brickschema.org/schema/1.1/BrickShape

Fierro et al.

SHACL language. The validation of a Brick+ model instance using these shapes is simple to perform717
through the Brick+ software library. The Brick+ shapes and the validation process are captured online at718
https://brickschema.readthedocs.io/en/latest/validate.html.719

7 BRICK MODEL MIGRATION
As the Brick ontology evolves it becomes increasingly important to handle the migration of a particular720
building model from one version to another. The migration should fulfill the following properties:721

• Complete: The migration should handle the translation of all classes and relationships from one722
version of the ontology to another.723

• Semantics-preserving: The migration should preserve the semantics of the original model when724
updating it to the new ontology wherever possible; the extent to which this can be fulfilled is determined725
in part by how well the ontology itself preserves the semantics of the older version.726

• Automatic: The migration should minimize the amount of input and manual translation effort required727
of the model developer.728

In this section, we present the design, implementation and evaluation of a tool for migrating Brick model729
developed against the prior Brick 1.0.x ontology versions [4, 5] to the Brick+ ontology developed in this730
paper.731

While the older versions of Brick have more structure than Haystack, we can still adopt a similar approach732
for formalizing the relationship between Brick concepts and Brick+ concepts. Both the Brick-migration733
described in this section and the Haystack-inference described in §8 describe how these non-formal734
metadata standards can be defined in terms of the formal Brick+ definition.735

7.1 Migration Strategies for Brick736

We adopt two strategies for migrating models developed against Brick to the newer Brick+ ontology:737
migration of classes and migration of relationships.738

Class migration consists of referring instances of Brick classes to the most appropriate Brick+ class.739
Most of the class names stayed the same between Brick and Brick+, meaning the migration can be740
performed through a simple 1-to-1 mapping of namespaces. Cases where the name of the class changed741
while the role and definition stayed the same are handled through the same mechanism.742

For cases where there is not a 1-to-1 mapping between classes in the two versions, we adopt743
a parametric approach to migration. The most common case where 1-to-1 mapping fails is that744
of so-called “equipment-flavored” classes. The original Brick class structure included many class745
names — the majority of them Point classes — that incorporated the name of equipment. For746
example, the Brick class AHU Zone Air Temperature Sensor represents the concept of an747
Zone Air Temperature Sensor associated with an air handling unit. The existence of this class748
raised an issue for practitioners: should they use the Zone Air Temperature Sensor class with an749
brick:isPointOf relationship to an instance of the Air Handling Unit class, or should they sim-750
ply use the AHU Zone Air Temperature Sensor class? Brick+ addresses this issue by eliminating751
all “equipment-flavored” classes, preferring the explicit association of points to equipment through the752
brick:isPointOf relationship.753

In order to preserve the semantics of the “equipment-flavored” classes, the migration tool must go754
beyond simply translating class names and now must add relationships as well. The migration tool adds the755
requisite relationships where the instance of the “equipment-flavored” point class already had a relationship756

This is a provisional file, not the final typeset article 24

https://brickschema.readthedocs.io/en/latest/validate.html

Fierro et al.

1 PREFIX brick_v_1_0_3: <https://brickschema.org/schema/1.0.3/Brick#>
2 PREFIX brick: <https://brickschema.org/schema/1.1/Brick#>
3 DELETE {
4 ?subject ?predicate brick_v_1_0_3:AHU_Zone_Air_Temperature_Sensor
5 } INSERT {
6 ?subject ?predicate brick_plus:Zone_Air_Temperature_Sensor
7 } WHERE {
8 ?subject ?predicate brick_v_1_0_3:AHU_Zone_Air_Temperature_Sensor
9 }

Figure 13. An example of a SPARQL 1.1 UPDATE query migrating a Brick 1.0.3 class to a Brick+ class.

to an instance of the appropriate equipment class. When the instance does not have a relationship to an757
equipment instance, the migration module can either generate a temporary placeholder instance of the758
equipment or raise a flag to the user to indicate the lack of one.759

The change in class structure from a strict hierarchy (Brick) to a lattice (Brick+) is transparent to the760
building models and thus does not need to be addressed by the migration process.761

Relationship migration consists of replacing Brick relationships with the most appropriate Brick+762
relationship. Brick+ preserves the relationships defined in Brick, so the migration tool only needs to handle763
the translation of the namespace. Although Brick+ incorporates some new relationships, these are either764
used solely within the definition of the class lattice (e.g. brick:measures), are not yet used by Brick765
instances, or can be added automatically (e.g. brick:hasTag); therefore, the migration tool does not766
need to handle these new relationships.767
7.2 Implementation768

The migration tool is implemented in Python and is included as part of the open source Brick+ distri-769
bution6. The tool includes a set of conversion queries that implement the translation from one version of770
Brick to another. A conversion query is phrased in the SPARQL 1.1 UPDATE language and is generated771
from an underlying dictionary of the simple and parametric migrations described above. Figure 13 contains772
an example of a conversion query. Each conversion query is parameterized by the source and destination773
version of Brick; the query converts a given term from the source version of Brick to its migrated form774
in the destination version. The conversion queries are incorporated into the migration algorithm, which775
consists of the following steps:776

1. Accept as input the source model, the source version of Brick, and the intended output version of777
Brick.778

2. If the migration tool contains a set of conversion queries for the provided source and destination779
version, then continue with the direct translation. Otherwise, perform an indirect translation (described780
below).781

3. Ingest the source model into a database (such as a triplestore) that supports the required SPARQL 1.1782
queries783

4. Execute all of the conversion queries against the triple store784

5. Serialize the edited model to the provided output file785

6 https://github.com/BrickSchema/Brick

Frontiers 25

https://github.com/BrickSchema/Brick

Fierro et al.

Model Name Classes % Translated Relationships % Translated
Soda 34/34 100% 7/7 100%
GHC 79/80 98.75% 8/8 100%
Rice 57/57 100% 5/5 100%
EBU3B 217/217 100% 3/3 100%
GTC 570/582 97.94% 8/9 88.89%

Table 3. The completeness of the migration tool against five Brick reference models in terms of the unique
classes and relationships in the source model.

Model Name Classes % Translated Relationships % Translated
Soda 1693/1693 100% 2078/2078 100%
GHC 9103/9112 99.90% 36458/36458 100%
Rice 632/632 100% 718/718 100%
EBU3B 6174/6174 100% 8392/8392 100%
GTC 1524/1526 99.21% 5309/5311 99.99%

Table 4. The completeness of the migration tool against five Brick reference models in terms of the
instances of classes and relationships in the source model.

The migration tool maintains an RDF graph containing the details of all available conversions. In the case786
where a direct migration is not available, the migration tool runs a shortest-path algorithm to determine a787
sequence of intermediate versions through which the source model can be migrated so as to arrive at the788
desired output version. Currently, the shortest-path algorithm uses the number of intermediate versions as789
the distance metric.790
7.3 Evaluation of Migration Tool791

To evaluate the efficacy and completeness of the migration tool, we apply it to five of the original Brick792
reference models published as part of [4] to translate them from version 1.0.2 to Brick+.793

The results of applying the migration tool to the source models are enumerated in Tables 3 and 4.794
The migration tool successfully converts 98% of the unique classes used in the models and 91% of the795
relationships. The unmapped classes — those for which no conversion query existed — were left as-is: no796
information was lost from the original models. These unmapped classes exist where the model authors797
defined their own extensions to Brick.798

This evaluation demonstrates that the migration tool is effective in handling the translation of classes and799
relationships between past and current version of Brick. We believe that the methodology developed here800
will allow the migration tool to perform effective migrations of models through future versions of Brick.801

8 HAYSTACK–BRICK+ INFERENCE
To further evaluate how well a formal approach to metadata enables consistency, we examine how well the802
Brick+ inference engine is able to extract and classify entities from a set of five Haystack models.803
8.1 Source Haystack Models804

We assemble a set of five Haystack models, each consisting of a set of tagged entities. Haystack model 1805
is the “Carytown” reference model published by Project Haystack for a 3000 sq ft building in Richmond,806
VA. Haystack models 2 and 3 are sample Haystack data models with for complex buildings, and thus807
contain large numbers of specialized and non-standard tags [11]. Haystack models 4 and 5 represent two808
office buildings on the UC Davis campus. Together, these five Haystack models represent a diverse family809
spanning small to large buildings, differing numbers of custom tags, and different model modelers.810

This is a provisional file, not the final typeset article 26

Fierro et al.

Si
te

N
am

e

H
ay

st
ac

k
En

tit
ie

s

In
fe

rr
ed

B
ri

ck
E

nt
iti

es

%
C

la
ss

ifi
ed

E
nt

iti
es

U
nc

la
ss

ifi
ed

E
nt

iti
es

A
vg

%
C

us
to

m
Ta

gs
pe

rE
nt

ity

U
ni

qu
e

C
us

to
m

Ta
gs

1 22 23 86.4% 3 7.4% 4
2 147 168 89.8% 15 5.0% 6
3 149 145 73.8% 39 6.6% 7
4 2183 1755 86.7% 290 17.6% 46
5 6474 6236 93.0% 451 19.5% 41

Table 5. Results of inferring Brick entities from tagged Haystack entities.

8.2 Haystack Inference Results811

Table 5 contains the results of applying the Brick inference engine to the five Haystack models. When the812
inference engine splits Haystack entities into equipment and a point, the number of inferred Brick entities813
can exceed the number of original Haystack entities814

The % Classified Entities column indicates the percentage of Haystack entities that were successfully815
classified by the Brick inference engine; the Unclassified Entities column contains the number of entities816
that were not classified. The majority of unclassified entities were such due to the use of non-standard817
tags that have no provided definition, and thus were not included in the Brick tag structure. The lowest-818
performing Haystack model, Site 3, represents a data center and contained a number of specialized lighting,819
HVAC and data center equipment and points that are not covered by the existing Haystack tag dictionary.820

To understand the impact of informal modeling practices on interpretability and consistency, we examine821
the occurrence of non-standard tags in the five Haystack models; the results are contained in the Avg %822
Custom Tags per Entity column and Unique Custom Tags column, which shows the number of user-defined823
tags in each building, showing the same trend. Models 4 and 5 contain a higher incidence of custom824
tags because they contain detailed representations of HVAC systems, thus requiring additional vocabulary825
beyond what is defined in Haystack. The required vocabulary includes HVAC concepts not yet defined in826
Haystack (e.g., differential for differential pressure) and functional relationships outside827
the Haystack’s scope, such as capturing spatial relationships.828

Examination of the Haystack models reveals three patterns of inconsistent tagging. Firstly, the lexical829
overlap of tags (detailed in Table 1) leads to one tag being used incorrectly in place of another; for example,830
using heat instead of heating. Secondly, because there is no notion of a “sufficient” tag set for a831
concept, several entities have ambiguous interpretations due to partial tagging. For example, several832
entities have the differential tag, but do not have a tag to clarify the quantity (e.g. pressure,833
temperature). Thirdly, the lack of compositional rules resulted in the ad-hoc creation of site-specific834
“compound” tags: models 4 and 5 use a custom spMax tag instead of the Haystack-defined sp and max835
tags to differentiate between setpoints and parameters.836

8.3 Brick Inference Results837

To complete our evaluation of Brick+, we measure the number of properties that can be inferred from the838
entities in existing Brick models. Because Brick models already have a formal representation, the inference839
engine does not need to apply the cleaning or splitting phases of the inference procedure (§5) and can rely840
entirely upon the existing features of the OWL DL reasoner.841

Frontiers 27

Fierro et al.

Ontology Inferred Properties
(Total) (Avg per entity)

Brick 122,552 2.94/35.44
Brick+ 201,266 4.79/35.55

Table 6. Number of inferred properties for all entities across 104 Brick models in Brick and Brick+.

We executed the HermiT [16] OWL reasoner on 104 existing Brick models from the Mortar testbed [14]842
using the existing Brick ontology and our proposed Brick+ ontology, and computed the number of inferred843
properties. The results are summarized in Table 6: Brick+ was able to infer almost 80,000 more properties844
than Brick over the 42,681 entities contained in the Brick models. Brick+ was able to infer all the same845
properties as Brick, but was able to infer tags and behavioral properties as well.846

8.4 Discussion of Inference Results847

Our results demonstrate that Brick+ is able to infer 73-93% of entities in Haystack models that follow a848
canonical tagging scheme, and can infer more semantic properties about entities in Brick models than the849
previous release of Brick. Recall that Brick+’s inference engine does not currently infer all possible classes850
from a Haystack model; rather, it formalizes a particular interpretation and organization of Haystack tags851
applied to entities. Haystack tags in real-world Haystack models are highly idiosyncratic, due in part to852
site-specific invention of tags to cover concepts and relationships not defined in the Haystack tag dictionary.853
This suggests that Brick+’s inference engine will not be able to fully classify each Haystack entity without854
additional automated metadata construction techniques [22, 9]. Our results support this hypothesis: an855
ontology-based inference engine demonstrates decent performance against the informal Haystack data856
model, but, as expected, custom tags inhibit inference.857

9 CONCLUSION
Interoperability for building applications requires metadata standards that are semantically sound, rich and858
extensible. Tags provide an intuitive and informal model, but lack rules for composition and validation that859
enable consistent, interpretable usage. Brick+ constructs a compositional model of metadata where tags are860
part of a type system with an underlying formalism based on lattice theory. This enables new algorithmic861
methods for checking validity, consistency and compositional correctness that is necessary for building a862
new class of scalable and portable building applications.863

This paper presents a qualitative analysis of the popular Haystack tagging system and demonstrates864
how its ad-hoc nature inhibits the consistent description of building systems. To address these issues, we865
have introduced Brick+, a refinement of the Brick ontology with clear formal semantics that permits the866
inference of well-defined classes from unstructured tags. Brick+ helps to bridge the gap between existing867
ad-hoc, informal metadata practices and interoperable formal systems; this establishes a foothold for the868
continued co-development of the Brick and Haystack metadata standards.869

Brick+ is open-source and is in the process of being adopted as the authoritative implementation of Brick.870
The Brick+ ontology, generation framework, source code of the inference engine, and the Haystack dataset871
are all available online at https://github.com/BrickSchema/Brick.872

10 ACKNOWLEDGEMENTS
This research is supported in part by California Energy Commission EPC-15-057, Department of Energy873
grant EE-0007685, NSF grants CNS-1526841 and CSR-1526237, and the CONIX Research Center, one of874
six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA. The875

This is a provisional file, not the final typeset article 28

https://github.com/BrickSchema/Brick

Fierro et al.

opinions expressed belong solely to the authors, and not necessarily to the authors’ employers or funding876
agencies.877

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted in the absence of any commercial or financial878
relationships that could be construed as a potential conflict of interest.879

AUTHOR CONTRIBUTIONS
The Author Contributions section is mandatory for all articles, including articles by sole authors. If an880
appropriate statement is not provided on submission, a standard one will be inserted during the production881
process. The Author Contributions statement must describe the contributions of individual authors referred882
to by their initials and, in doing so, all authors agree to be accountable for the content of the work.883

FUNDING
This research is supported in part by California Energy Commission EPC-15-057, Department of Energy884
grant EE-0007685, NSF grants CNS-1526841 and CSR-1526237, and the CONIX Research Center, one of885
six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA. The886
opinions expressed belong solely to the authors, and not necessarily to the authors’ employers or funding887
agencies.888

DATA AVAILABILITY STATEMENT
The datasets generated for this study can be found on GitHub at https://github.com/889
BrickSchema/brick-examples890

REFERENCES

[1] [Dataset] (2018). Project Haystack891
[2] [Dataset] (2020). PySHACL892
[3] [Dataset] American Society of Heating, Refrigerating and Air-Conditioning Engineers893

(2018). ASHRAE’s BACnet Committee, Project Haystack and Brick Schema Collabo-894
rating to Provide Unified Data Semantic Modeling Solution. http://web.archive.895
org/web/20181223045430/https://www.ashrae.org/about/news/2018/896
ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution897

898
[4] Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., et al. (2016). Brick: Towards899

a unified metadata schema for buildings. In Proceedings of the ACM International Conference on900
Embedded Systems for Energy-Efficient Built Environments (BuildSys). ACM901

[5] Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., et al. (2018). Brick: Metadata902
schema for portable smart building applications. Applied energy 226, 1273–1292903

[6] Balaji, B., Verma, C., Narayanaswamy, B., and Agarwal, Y. (2015). Zodiac: Organizing large904
deployment of sensors to create reusable applications for buildings (ACM), 13–22905

[7] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F.,906
et al. (2004). OWL Web Ontology Language Reference. Tech. rep., W3C, http://www.w3.org/TR/owl-907
ref/908

Frontiers 29

https://github.com/BrickSchema/brick-examples
https://github.com/BrickSchema/brick-examples
https://github.com/BrickSchema/brick-examples
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution

Fierro et al.

[8] Bhattacharya, A., Ploennigs, J., and Culler, D. (2015). Short paper: Analyzing metadata schemas for909
buildings: The good, the bad, and the ugly. In Proceedings of the 2nd ACM International Conference910
on Embedded Systems for Energy-Efficient Built Environments (ACM), 33–34911

[9] Bhattacharya, A. A., Hong, D., Culler, D., Ortiz, J., Whitehouse, K., and Wu, E. (2015). Automated912
metadata construction to support portable building applications. In Proceedings of the 2nd ACM913
International Conference on Embedded Systems for Energy-Efficient Built Environments (ACM), 3–12914

[10] Capozzoli, A., Piscitelli, M. S., Gorrino, A., Ballarini, I., and Corrado, V. (2017). Data analytics915
for occupancy pattern learning to reduce the energy consumption of hvac systems in office buildings.916
Sustainable Cities and Society 35, 191–208917

[11] [Dataset] Coffey, P. (2019). Project Haystack Example Data Models. http://web.archive.918
org/web/20190626161742/https://patrickcoffey.bitbucket.io/919

[12] Dong, B., Lam, K., Huang, Y., and Dobbs, G. (2007). A comparative study of the ifc and gbxml920
informational infrastructures for data exchange in computational design support environments. In921
Building Simulation 2007, BS 2007922

[13] Fierro, G., Koh, J., Agarwal, Y., Gupta, R. K., and Culler, D. E. (2019). Beyond a house of sticks:923
Formalizing metadata tags with brick. In Proceedings of the 6th ACM International Conference on924
Systems for Energy-Efficient Buildings, Cities, and Transportation. 125–134925

[14] Fierro, G., Pritoni, M., AbdelBaky, M., Raftery, P., Peffer, T., Thomson, G., et al. (2018). Mortar:926
an open testbed for portable building analytics. In Proceedings of the 5th Conference on Systems for927
Built Environments (ACM), 172–181928

[15] Gao, J., Ploennigs, J., and Berges, M. (2015). A data-driven meta-data inference framework for929
building automation systems (ACM), 23–32930

[16] Glimm, B., Horrocks, I., Motik, B., Stoilos, G., and Wang, Z. (2014). HermiT: an OWL 2 reasoner.931
Journal of Automated Reasoning 53, 245–269932

[17] [Dataset] Guha, R. and Brickley, D. (2014). RDF schema 1.1933
[18] Hardin, D., Stephan, E. G., Wang, W., Corbin, C. D., and Widergren, S. E. (2015). Buildings934

interoperability landscape. Tech. rep., Pacific Northwest National Lab.(PNNL), Richland, WA935
(United States)936

[19] Hong, D., Wang, H., Ortiz, J., and Whitehouse, K. (2015). The building adapter: Towards quickly937
applying building analytics at scale (ACM), 123–132938

[20] Jahn, M., Schwartz, T., Simon, J., and Jentsch, M. (2011). Energypulse: tracking sustainable behavior939
in office environments. In Int. Conf. on Energy-Efficient Computing and Networking (ACM), 87–96940

[21] Knublauch, H. and Kontokostas, D. (2017). Shapes constraint language (shacl). W3C Candidate941
Recommendation 11942

[22] Koh, J., Balaji, B., Sengupta, D., McAuley, J., Gupta, R., and Agarwal, Y. (2018). Scrabble:943
transferrable semi-automated semantic metadata normalization using intermediate representation. In944
Proceedings of the 5th Conference on Systems for Built Environments (ACM), 11–20945

[23] Lange, H., Johansen, A., and Kjærgaard, M. B. (2018). Evaluation of the opportunities and limitations946
of using ifc models as source of building metadata. In Proceedings of the 5th Conference on Systems947
for Built Environments. 21–24948

[24] Lassila, O. and Swick, R. R. (1999). Resource description framework (RDF) model and syntax949
specification950

[25] Mathes, A. (2004). Folksonomies - Cooperative Classification and Communication Through Shared951
Metadata , 14952

This is a provisional file, not the final typeset article 30

http://web.archive.org/web/20190626161742/https://patrickcoffey.bitbucket.io/
http://web.archive.org/web/20190626161742/https://patrickcoffey.bitbucket.io/
http://web.archive.org/web/20190626161742/https://patrickcoffey.bitbucket.io/

Fierro et al.

[26] Mims, N., Schiller, S. R., Stuart, E., Schwartz, L., Kramer, C., and Faesy, R. (2017). Evaluation953
of U.S. Building Energy Benchmarking and Transparency Programs: Attributes, Impacts, and Best954
Practices doi:10.2172/1393621955

[27] OSTI (2016). The National Opportunity for Interoperability and its Benefits for a Reliable, Robust,956
and Future Grid Realized Through Buildings. Tech. rep. doi:10.2172/1420233957

[28] Passant, A. (2007). Using ontologies to strengthen folksonomies and enrich information retrieval in958
weblogs. In International Conference on Weblogs and Social Media959

[29] Passant, A. and Laublet, P. (2008). Meaning of a tag: A collaborative approach to bridge the gap960
between tagging and linked data. LDOW 369961

[30] Pauwels, P. and Terkaj, W. (2016). Express to owl for construction industry: Towards a recommendable962
and usable ifcowl ontology. Automation in Construction 63, 100–133963

[31] Piette, M. A., Ghatikar, G., Kiliccote, S., Koch, E., Hennage, D., Palensky, P., et al. (2009). Open964
automated demand response communications specification (Version 1.0). Tech. rep., Ernest Orlando965
Lawrence Berkeley National Laboratory, Berkeley, CA (US)966

[32] Privara, S., Cigler, J., Váňa, Z., Oldewurtel, F., Sagerschnig, C., and Žáčeková, E. (2013). Building967
modeling as a crucial part for building predictive control. Energy and Buildings 56, 8–22968

[33] [Dataset] Project Haystack (2019). Project Haystack Documentation: Defs. http:969
//web.archive.org/web/20190629183024/https://project-haystack.dev/970
doc/docHaystack/Defs971

[34] [Dataset] Project Haystack (2019). Project Haystack Documentation: VFDs. http:972
//web.archive.org/web/20190629182856/https://project-haystack.org/973
doc/VFDs974

[35] Rasmussen, M. H., Pauwels, P., Hviid, C. A., and Karlshøj, J. (2017). Proposing a central aec ontology975
that allows for domain specific extensions. In 2017 Lean and Computing in Construction Congress976

[36] Reiter, R. (1981). On closed world data bases. In Readings in artificial intelligence (Elsevier).977
119–140978

[37] Roth, S. (2014). Open green building XML schema: A building information modeling solution for our979
green world, gbXML schema (5.12)980

[38] Schein, J., Bushby, S. T., Castro, N. S., and House, J. M. (2006). A rule-based fault detection method981
for air handling units. Energy and Buildings 38, 1485–1492982

[39] Sturzenegger, D., Gyalistras, D., Morari, M., and Smith, R. S. (2012). Semi-automated modular983
modeling of buildings for model predictive control (ACM), 99–106984

[40] Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., and Gao, X. (2020). Bim assisted985
building automation system information exchange using bacnet and ifc. Automation in Construction986
110, 103049. doi:https://doi.org/10.1016/j.autcon.2019.103049987

[41] [Dataset] W3C (2007). Punning988
[42] Wille, R. (1992). Concept lattices and conceptual knowledge systems. Computers & mathematics989

with applications 23, 493–515990
[43] Wille, R. (2009). Restructuring lattice theory: an approach based on hierarchies of concepts. In991

International Conference on Formal Concept Analysis (Springer), 314–339992
[44] Yang, Q. and Zhang, Y. (2006). Semantic interoperability in building design: Methods and tools.993

Computer-Aided Design 38, 1099 – 1112. doi:https://doi.org/10.1016/j.cad.2006.06.003994

Frontiers 31

http://web.archive.org/web/20190629183024/https://project-haystack.dev/doc/docHaystack/Defs
http://web.archive.org/web/20190629183024/https://project-haystack.dev/doc/docHaystack/Defs
http://web.archive.org/web/20190629183024/https://project-haystack.dev/doc/docHaystack/Defs
http://web.archive.org/web/20190629183024/https://project-haystack.dev/doc/docHaystack/Defs
http://web.archive.org/web/20190629183024/https://project-haystack.dev/doc/docHaystack/Defs
http://web.archive.org/web/20190629182856/https://project-haystack.org/doc/VFDs
http://web.archive.org/web/20190629182856/https://project-haystack.org/doc/VFDs
http://web.archive.org/web/20190629182856/https://project-haystack.org/doc/VFDs
http://web.archive.org/web/20190629182856/https://project-haystack.org/doc/VFDs
http://web.archive.org/web/20190629182856/https://project-haystack.org/doc/VFDs

	Introduction
	Brick and Haystack Metadata Systems
	Overview

	Background
	Definitions
	Haystack
	Brick
	Prior Metadata Construction Efforts
	Relation to Building Information Modeling

	Systemic Tag Issues in Haystack
	Lack of Formal Class Hierarchy
	Balancing Composability and Consistency
	Lack of Composition Rules
	Impact on Consistency

	Design of Brick+
	Limitations of Brick
	Overview of Brick+
	Brick+ Class Lattice
	Brick+ Relationships
	Brick+ Tags
	Brick+ Substances and Quantities

	Brick+ Implementation
	Substance Implementation
	Formalizing the Tag-Class Equivalence
	Brick-Haystack Inference Procedure

	Brick+ Validation
	The Role of Validation
	Brick+ Validation with SHACL
	Implementation
	Evaluation of Validation Tool

	Brick Model Migration
	Migration Strategies for Brick
	Implementation
	Evaluation of Migration Tool

	Haystack–Brick+ Inference
	Source Haystack Models
	Haystack Inference Results
	Brick Inference Results
	Discussion of Inference Results

	Conclusion
	Acknowledgements

