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ABSTRACT
Current efforts establishing semantic metadata standards for the
built environment span academia [3], industry [1] and standards
bodies [2, 28]. For these standards to be effective, they must be
clearly defined and easily extensible, encourage consistency in their
usage, and integrate cleanly with existing industrial standards, such
as BACnet. There is a natural tension between informal tag-based
systems that rely upon idiom and convention for meaning, and
formal ontologies amenable to automated tooling.

We present a qualitative analysis of Project Haystack [1], a pop-
ular tagging system for building metadata, and identify a family
of inherent interpretability and consistency issues in the tagging
model that stem from its lack of a formal definition. To address
these issues, we present the design and implementation of the
Brick+ ontology, a drop-in replacement for Brick [3] with clear
formal semantics that enables the inference of a valid Brick model
from an informal Haystack model, and demonstrate this inference
across five Haystack models.
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1 INTRODUCTION
Smart buildings have long been a target of efforts aiming to re-
duce energy consumption, improve occupant comfort, and increase
operational efficiency. Although a substantial body of work ad-
vances the state-of-the-art — including automated control [8, 24, 31],
modeling [25] and analysis [16, 30] — such approaches do not see
widespread use due to the prohibitive cost of configuring their in-
stantiation to each building. A major factor in this cost is due to lack
of interoperability standards; without such standards, the rollout of
energy efficiency measures involves customizing implementations
to the one-off combinations of hardware and software configu-
rations that are unique to each building. Limited deployment of
energy efficiency applications constrains the ability to evaluate po-
tential savings [20]. Recent studies by the US Department of Energy
[14, 21] have established that a lack of interoperability standards for
buildings reduces the cost-effectiveness and scalability of energy
efficiency techniques and analyses.

Semantic metadata standards present a promising path to en-
abling interoperability by offering uniform descriptions of building
resources to application developers and building operators. To-
day, semantic metadata standardization efforts for buildings span
academia [3], industry [1, 29] and standards bodies [2, 28]. As appli-
cations developed for the built environment have become increas-
ingly data-focused, recent metadata standard efforts have shifted
from supporting the initial construction and commissioning phases
of operation to enabling robust descriptions of the provenance and
context of collected data.

1.1 Brick and Haystack Metadata Systems
Emerging data-oriented metadata standards differ in their support
for consistent and extensible use. De-facto industrial metadata prac-
tices have embraced unstructured vendor- and building-specific
idioms intended for human consumption rather than programmatic
manipulation. Several standardization efforts have arisen to ad-
dress the ad-hoc nature of building metadata. Of these, Brick [3]
and Project Haystack [1] have seen adoption and investment from
academic and industrial sources, and are involved in the ASHRAE
223P effort to standardize semantic tagging for building data [2].

Project Haystack is a commonly-used open building metadata
standard that replaces unstructured labels with semi-structured
sets of tags1. However, the informal and ad-hoc composition of
these tags precludes consistent usage; this leaves interpretation of
tags up to the tacit knowledge of domain experts.

1Referred to as “Haystack” in the rest of the paper
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Brick is a recently introduced metadata standard designed for
completeness (describing all of the relevant concepts required for
applications), expressiveness (capturing the explicit and implicit
relationships required for applications) and usability (fulfilling the
needs of domain experts and application developers). Although
evaluations of Brick demonstrate its ability to robustly capture a
wide variety of application requirements, the story of how Brick
integrates with existing tooling and industrial practices, such as
Haystack, has been less clear.

Put simply, Brick and Haystack serve different goals. Brick is
designed for the complete and consistent modeling of concepts
required for developing portable software that can be deployed at
scale. Haystack is designed for building managers and engineers
who need familiar idioms for developing and using software de-
signed to function on a small number of buildings. However, these
informal practices are not sufficient for the large-scale standardiza-
tion of consistent semantic metadata necessary for the widespread
deployment of energy efficiency applications. Consistent metadata
requires a set of rules formalizing how metadata can be defined,
structured, composed and extended.

In this paper, we present the design and implementation of Brick+,
a drop-in replacement for the Brick ontology with clear formal
semantics designed for the sensible composition of concepts re-
quired for portable building applications. The key design principle
of Brick+ is the choice to model concepts in terms of the formal
composition of their properties. This is more expressive than the
original Brick class hierarchy which captures specialization, but not
behavior. Brick+ enables the inference of properties beyond what
can be captured by tag-based metadata schemes or the original
Brick schema, including modeling the behavior of equipment and
points and formalizing Haystack models. Ultimately, these steps
enable the inference of a formal Brick+ model from an informal
Haystack model.

1.2 Overview
§3 presents an analysis of the systemic interpretability and consis-
tency issues endemic to the Haystack metadata system, motivating
the need for formal rules for composition. §4 presents the design of
Brick+, a drop-in replacement for Brick with clear formal seman-
tics. Brick+ defines a class lattice that structures the composition
of concepts. This lattice enables Brick+ to define inference from
Haystack’s informal tags to formal Brick classes. §5 presents the
implementation of Brick+ using the OWL-DL ontology language
and defines the process by which a Brick model can be inferred
from a set of tagged Haystack entities. §6 evaluates the Brick+ on-
tology and inference methodology by observing the accuracy of
classifying entities from five Haystack models to Brick+, and ex-
amining the additional properties that can be inferred by Brick+
over 104 existing Brick models. §7 summarizes ongoing and future
efforts to integrate the Brick and Haystack metadata standards and
concludes.

2 BACKGROUND
We define a set of concepts for later use, provide an overview of
the Brick and Haystack metadata models, and discuss how Brick+
fits into the existing body of literature.

2.1 Definitions
We refer to the following terms throughout the paper:

• A tag is an atomic fact or attribute; tags may or may not be
associated with a value.

• A tag set is an unordered collection of tags associated with
an entity.

• A valid tag set is a tag set with a clear, real-world definition.
• An entity is an abstraction of a physical, logical or virtual
item.

• A class is a category of entities defined by a particular shared
purpose and properties.

In Brick and Brick+, classes are organized by the subclass and
superclass relationships between classes. This approach organizes
classes naturally in terms of more specific or more general concepts.
For example, the class of “sensors” is more general than the class
of “temperature sensors” (sensors that measure the temperature
property of some substance) and the class of “air sensors” (sensors
that measure properties of air), which are both more general than
the class of “air temperature sensors“ (sensors that measure the
temperature property of air). In Brick, Air Temperature Sensor
is the class of all entities that measure the temperature of air.

2.2 Haystack
Haystack defines entities as a set of value tags (representing key-
value pairs) and marker tags (singular annotations). Value tags
define attributes of entities such as name, timezone, units and
data type. Ref tags are a special kind of value tag that refer to
other Haystack entities. These hint at relationships, but are entirely
generic; the relationship is understood by convention. Haystack
provides a dictionary of defined tags on its website [1]. The set of
marker tags for an entity constitute the “tag set” for that entity and
construe the concept of which the entity is an example (its “type”).

2.3 Brick
The Brick ontology has two components: an extensible class hier-
archy representing the physical and logical entities in buildings,
and a minimal set of relationships that capture the connections
between entities. A Brick model of a building is a labeled, directed
graph in which the nodes are entities and the edges are relation-
ships. Brick is defined using the Resource Description Framework
(RDF) data model [18], which represents graph-based knowledge
as tuples of (subject, predicate, object) termed triples. A triple
states that a subject entity has a relationship (predicate) to an
object entity. Line 2 of Figure 3 is a triple for which the subject
is :sensor1, the predicate (relationship) is a, and the object is
brick:Temperature_Sensor.

Brick and Brick+ are both definedwith the RDFS [13] andOWL [6]
knowledge representation languages. These languages allow the
expression of rules and constraints for authoring ontologies, which
can be interpreted by a semantic reasoner such as HermiT [12] to
materialize inferred triples from a set of input triples. Brick+’s use
of a semantic reasoner is covered in §5.

2.4 Prior Metadata Construction Efforts
Several other works conduct inference and classification to extract
structure from unstructured building metadata, including leverag-
ing semi-supervisied learning approaches to learn parsing rules for
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Figure 1: The set of valid (blue + solid outline) and invalid
(red + dashed outline) tagsets for a set of four tags. The class
hierarchy is established from top to bottom; subclass rela-
tionships are indicated by arrows.

unstructured labels [7, 17], classifying sensors by examining histor-
ical timeseries data [11, 15], or by combining timeseries analysis
with label clustering [5]. These efforts are largely complementary to
Brick+. Brick+ defines formal methods for inference-based classifi-
cation of tagged entities, but requires external support for extracting
tagged entities from unstructured metadata.

Beyond the building domain, there is a family of work [22, 23]
using ontologies to provide structure to tag-based folksonomies [19].
The approaches developed in these works, along with work on
formal concept analysis [34] and concept lattices [33], form the
theoretical basis for Brick+.

3 SYSTEMIC TAG ISSUES IN HAYSTACK
Although Haystack models have seen increasing adoption, the de-
sign of the Haystack data model has several intrinsic issues that
limit its consistency and interpretability.

3.1 Lack of Formal Class Hierarchy
A well-formed class hierarchy organizes concepts by their speci-
ficity. This is essential for the creation of consistent metadata mod-
els because it facilitates automated discovery of classes by way of
traversing the hierarchy for more general or more specific concepts.
In the process of identifying an appropriate class for an entity, a user
can browse the hierarchy from the most general classes (equipment,
location, sensor, setpoint, substance) to the specific class whose
definition best describes the entity.

A well-formed class hierarchy is extensible. Users can create
new, more specific classes that subclass existing, but more general,
superclasses. Even in the absence of a textual definition for this new
class, the subclass relationship provides an immediate contextual
scoping for how the class is meant to be used.

Haystack lacks an explicit class hierarchy, and the informal con-
struction of Haystack complicates the automated generation of one.
Recall that the type of each entity in a Haystack model is defined
by a set of tags. We can formalize this as:

Definition 3.1. The set of tags for a class or entity x is given
by T (x). The definition of a class C is any entity that has the tags
defined by T (C). An entity e is a member of class C if T (e) ⊇ T (C)

This definition embeds the key assumption of tag-based meta-
data: smaller tag sets convey more generic concepts. As an example,

the pseudo-class identified by the Haystack tags discharge air
temp setpoint is a subclass of the class identified by the tags air
temp setpoint. However, the use of tag sets to specify the sub-
class relationship is insufficient for a well-formed class hierarchy
because it is possible to construct two class definitions Ci and Cj
such thatT (Ci ) ⊇ T (Cj ) but the definition ofCi is not semantically
more specific than Cj .

Consider the counter example of two concepts: Air Flow
Setpoint (the desired cubic feet per minute of air flow) and Max
Air Flow Setpoint (the maximum allowed air flow setpoint). In
Haystack, Air Flow Setpoint would be identified by the air,
flow and sp tags, and Max Air Flow Setpoint would be identi-
fied by the air, flow, sp and max tags. Although suggested by the
set-based relationship, Air Flow Setpoint is not a superclass of
Max Air Flow Setpoint: the former is a setpoint, but the latter
is actually a parameter governing the selection of setpoints and
therefore belongs to a distinct subhierarchy.

As a result, the rules for defining valid tagsets for subclass rela-
tionships must be defined in terms of which tags can be added to
a given tag set to produce a valid subclass relationship. Defining
a concept requires knowing which tags cannot be added; without
a clear set of rules for validation, a user may use the max and min
tags to indicate the upper/lower bounds of deadband-based control,
which is inconsistent with the intended usage of these tags.

3.2 Balancing Composability and Consistency
One of the primary benefits of an tag-based metadata scheme is
composability. A dictionary of tags provides the vocabulary from
which users can draw the terms they need to communicate some
concept. Composing sets of tags together allows for communica-
tion of increasingly complex concepts, and adding new tags to
the dictionary exponentially increases the number of describable
concepts.

However, increased composability comes at the cost of lower
consistency: a clear, unambiguous, one-to-one mapping between
a set of tags and a concept. Without rules defining composability,
consistent interpretation of a tag set is dependent upon idiom,
convention and other “common knowledge” of the community
using the tags. As a result, the set of tags used by one individual to
describe an entity may have multiple meanings or no meaning at
all to other individuals. In other words, the intended meaning of a
tag becomes more ambiguous the more contexts in which it is used.
For example, using the tags heat, oil and equip on an entity does
not state if the equipment heats using oil or if oil is what is being
heated.

To mitigate this effect, Haystack defines “compound” tags. These
are concatenations of existing tags into new atomic tags with spe-
cific semantics distinct from that of its constituents. For example,
the hotWaterHeat compound tag is defined specifically as indicat-
ing that an air handler unit has heating capability using hot water.
This trades composability — which tags can be used together —
with consistency — an unambiguous definition for a set of tags.
Haystack calls these “semantic conflicts”:

“Another consideration is semantic conflicts. Many of
the primary entity tags carry very specific semantics.
For example the site tag by its presence means the
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cool × × × ×

cooling ×

coolOnly × ×

dxCool × × ×

chilledWaterCool × × ×

waterCooled × ×

airCooled × ×

Table 1: An enumeration of the intended use and context
of tags relating to heating and cooling, as given by the
Haystack documentation. Note the differences in diction
across compound tags, and how some compound tags could
be assembled from more atomic tags. Some tags are used
both for equipment and for points when equipment is mod-
eled as a single point (such as VFDs, Fans, Coils)

data models a geographic site. So we cannot reuse the
site tag to mean something associated with a site;
which is why use the camel case tag siteMeter to
mean the main meter associated with a site.[26]”

The most common types of semantic conflicts concern process
tags and substance tags. We explore how ambiguities arise for these
two family of tags; §4 demonstrates how Brick handles these issues.

Process Tags. For a metadata scheme to consistently describe a
process, it must decompose a process into entities and capture how
each entity relates to the process: does the entity monitor or control
the process? Does it transport a substance or provide a means for
two substances to interact?

It is difficult for a limited dictionary of tags to capture unam-
biguously the family of concepts involved. Consider the case of
an air handling unit that heats air by passing it around a coil of
hot water. With a limited dictionary of tags, most of the entities
(equipment and points) involved will be tagged with hot, heat,
air and/or water. However, a flat set of tags does not permit any
differentiation between concepts that share the same tags.

Table 1 categorizes the intended usage of each Haystack
tag containing the word “heat” (including “reheat”) or “cool.”
Without this table or the Haystack documentation in hand, it
is difficult to discern when to use a compound tag or sev-
eral tags together: chilled+waterCooled, chilledWaterCool or
chilled+water+cool? Furthermore, there is no formal, program-
matically accessible form of the documentation that would allow
this to be done in an automated fashion.

Substance Tags. What constitutes sufficient and consistent de-
scriptions of substances (such as water and air) depends upon the

breadth of intended use. Existing building metadata systems do not
model substances directly; instead, they describe equipment and
points in terms of what substances they manipulate, measure or
utilize. Thus, an effective metadata scheme for substances must
capture at least the nature of the relationship between substances,
equipment and points.

Flat tag structures lack the expressive power to make these
distinctions unambiguous. To reduce ambiguity, Haystack uses
substance tags only on points and uses compound tags for
equipment. For example hot water valve cmd and chilled
water entering temp sensor use the water substance tag,
but an air handler unit with a water-based chiller would use
chilledWaterCool. This means that substance tags cannot
be used to identify which points and equipment relate to a
given substance. Furthermore, to perform such a query, a user
would need to know the entire family of tags that relate to that
substance. In the case of “water”, this list is water, waterCooled,
waterMeterLoad, chilledWaterCool, chilledWaterPlant,
hotWaterHeat, hotWaterPlant and hotWaterReheat, not to
mention any user-defined tags.

3.3 Lack of Composition Rules
Haystack sacrifices composability of tags for more consistent inter-
pretability, such as through the use of compound tags. Without a set
of rules for how tags can be composed, there is no programmatic or
automated mechanism to enforce or inform consistent usage of the
tag dictionary. Haystack contains a small set of explicit rules, but
largely relies upon idiom and human interpretation for consistency.

Extending Tag Sets. In order to encourage consistent usage,
metadata schemes need rules for generating new concepts and gen-
eralizing existing concepts. Rules for generating new concepts allow
these concepts to be qualified by their relation to existing classes.
Rules for generalizing existing concepts allow users (and programs)
to reason about the behavior of a group of concepts. Formal mech-
anisms for generalization and specialization aid the discoverability,
interpretability and extensibility of a metadata scheme. Unfamil-
iar concepts can be understood or referenced by their behavior or
superclasses, and new concepts can be added seamlessly.

Concepts in Haystack can be extended through annotation with
additional tags; e.g. temp sensor refines the concept of sensor.
However, tags cannot be freely combined (Figure 1). One mecha-
nism for defining valid tag sets parameterizes existing tag sets with
a choice from a set of mutually exclusive tags. Haystack explicitly
defines several of these. Two examples from many:

(1) The heating method for an AHU, given by one of gasHeat,
hotWaterHeat, steamHeat or gasHeat.

(2) The family of water meters recognized by Haystack can be
differentiated by the tags domestic, chilled, condenser,
hot, makeup, blowdown and condensate.

Haystack also has many implicit rules for defining valid exten-
sions to tag sets. Application of these rules largely depends upon
domain knowledge – for example an entity will likely not have
two distinct substance tags such as air and water – as well as
informal idioms conveyed through documentation. An example
of the latter is the convention that points (sensors, setpoints and
commands) will have a “what” tag (e.g. air), a “measurement” tag
(e.g. flow) and a “where” tag (e.g. discharge). However, this is
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not a hard and fast rule, and many of the tag sets in Haystack’s
documentation break with this convention. Consequently, there is
no clear notion of how concepts can be meaningfuly extended or
generalized, which limits the extensibility of Haystack.

Modeling Choices. The lack of formal structures for construct-
ing tag sets means that enforcement of consistency – choosing the
same set of tags to represent the same concept – relies upon the
conventions of industrial practice and the idioms of the Haystack
community. As a result, there is substantial variation in how the
same concept is modeled.

One prominent example in Haystack is the choice of whether to
model pumps and fans as equipment or as points. Although pumps
and fans are equipment, in many BMS they are represented by
only a single point (usually the speed or power level). Haystack’s
documentation encourages simplifying the representation of such
equipment under such circumstances:

“Pumps may optionally be defined as either an
equip or a point. If the pump is a VFD then it is
recommended to make it an equip level entity. How-
ever if the pump is modeled [in the BMS] a simple
on/off point as a component within a large piece of
equipment such as a boiler then it is modeled as just
a point.[27]”

Complex predicates such as these complicate the querying of a
Haystack model. In particular, exploratory queries have to take the
family of modeling choices into account: to list all of the pumps in
a Haystack model, it is not sufficient to only look for entities with
the pump and equip tag.

3.4 Discussion
These issues with tag-based metadata inhibit extensibility and con-
sistency at scale. Most Haystack models are designed to be used by
small teams familiar with the site or sites at hand, so it is enough
for these models to be self-consistent. As long as there is agreement
on how to tag a given concept, the informality of the model is not
as detrimental; most tag sets in Haystack make intuitive sense to
domain experts. However, the lack of formalization — specifically, a
lack of a formal class hierarchy and rules for composability and ex-
tensibility — presents issues for adoption as an industrial standard
and basis for automated analysis and reasoning.

In the next sections, we show that the tradeoff between compos-
ability and consistency is tied to the choice to use tags for annotation
as well as definition. With an explicit and formal class hierarchy
it is possible to design a system that exhibts the composability of
simple tags, while retaining the consistency and extensibility of an
ontology.

4 DESIGN OF BRICK+
Although Brick [3] establishes a formal class hierarchy and a set
of descriptive relationships, it lacks the structure for inference
of classes from tags and exhibits a number of design issues that
impede this development. This motivates the design of Brick+, a
drop-in replacement ontology for Brick that extends the hierarchy
of described concepts to include fine-grained semantic properties
and defines an explicit mapping from Brick concepts to sets of tags.
Together, these enable the programmatic interpretation of tag sets,

therefore eliminating the consistency and interpretability issues
inherent to a tags-only design (§3).

4.1 Limitations of Brick
The design and implementation of Brick has several issues which
inhibit formalizing the relationship between classes and tags.

No formal equivalence between tags sets and classes. Brick
models a class hierarchy using a special construction called a TagSet.
A TagSet has a definition, a set of related tags, and a name com-
posed of each of the tags concatenated together. The Brick ontology
defines which tags are used with which TagSets, but fails to capture
bidirectional equivalency between the two definitions. Brick can
retrieve the tags associated with a TagSet, but given a set of tags,
Brick cannot infer the set of possible TagSets.

No modeling of function or behavior. The Brick class hier-
archy relates different TagSets only by a “subclass” relationship;
there is no semantic information to distinguish classes in terms of
their behavior. The simple association of tags to TagSets also does
not offer any semantic information. Enhancing the class definitions
with more semantic information would increase the usability of
Brick and the discoverability of concepts.

Inconsistentmodeling and implementation.The implemen-
tation of the Brick ontology consists of a set of Turtle2 files contain-
ing the ontology statements. These files are generated by a Python
script that transforms an CSV-based specification into the Turtle
syntax for RDF. This process is brittle, error-prone and difficult to
test and extend.

4.2 Overview of Brick+
Brick+ has three components: a class lattice defining the family of
equipment, points, locations, substances and quantities in buildings;
a set of expressive relationships defining how entities behave and
how they are connected, contained, used and located; and a family
of tags defining the atomic attributes and aspects of entities

The implementation of Brick+ relies upon the use of a semantic
reasoner, piece of software that materializes the set of facts deduced
through the application of the logical rules contained within an
ontology. An important implementation factor is the language used
to define the ontology: more expressive languages can significantly
increase the runtime complexity of the reasoning process (decreas-
ing the utility of the system in an applied context), whereas less
expressive languages may not be able define the necessary rules.
The formal specification of Brick+ uses the OWL DL language to
define rules for the operation and usage of Brick+ and to achieve
the desired runtime properties.

4.3 Brick+ Class Lattice
Brick+ organizes all concepts into a class structure rooted in a small
number of high-level concepts. Brick defines this structure as a
tree-based hierarchy; Brick+ refines this structure into a lattice.
Both the lattice and the hierarchy are defined in terms of a “sub-
class” relationship (§2), but differ in how they define relationships
between concepts. A class hierarchy captures how concepts can be
specialized, but does not encode how these concepts behave and
relate to one another. In contrast, a lattice captures how concepts
2https://www.w3.org/TR/turtle/
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Relationship Definition Domain Range Inverse Transitive?
hasLocation Subject is physically located in the object entity * Location isLocationOf yes

feeds Subject conveys some media to the object entity in
the context of some sequential process

Equipment Equipment isFedBy no
Equipment Location

hasPoint Subject has a monitoring, sensing or control point
given by the object entity

Equipment Point isPointOf no
Location Point

hasPart Subject is composed – logically or physically – in
part by the object entity

Equipment Equipment isPartOf yes
Location Location

measures Subject measures a quantity or substance given by
the object entity

Sensor Substance no
Sensor Quantity no

regulates Subject informs or performs the regulation of the
substance given by the object entity

Setpoint Substance no
Equipment Substance

hasOutputSubstance Subject produces or exports the object entity as a
product of its internal process

Equipment Substance no

hasInputSubstance Subject receives the object entity to conduct its in-
ternal process

Equipment Substance no

Table 2: List of high-level relationships supported by Brick+.

can be composed from sets of properties. This offers greater flexi-
bility in the definition of concepts in Brick+ and facilitates the tag
decomposition and mapping to Haystack detailed in §5.

Brick+ has six primary concepts. Point is the root class for all
points of telemetry and actuation. There are six immediate sub-
classes of Point categorized by the high-level semantics of how
each point behaves: Sensor, Setpoint, Command, Status, Alarm
and Parameter.

Brick+ refines the design of the Brick ontology to differentiate
between parameters and setpoints. This avoids conflating the con-
cepts of the minimum and maximum setpoints used in deadband
control (such as to configure a thermostat to maintain a temperature
within that band) and the minimum and maximum allowed values
for a setpoint (for example to place a lower bound on permitted air
flow setpoints).

Equipment is the root class for the lattice of mechanical equip-
ment used in a building. The Brick+ equipment lattice covers equip-
ment for HVAC, lighting, electrical and water subsystems. Brick+
extends the modeling of equipment in Brick to include how classes
of equipment relate to substances and processes in the building.

Location is the root class for the lattice of spatial elements of
a building. The lattice includes physical elements such as floors,
rooms, hallways and buildings as well as logically-defined physical
extents such as HVAC, lighting and fire zones.

Substance is the root class for the lattice of physical concepts
that are measured, monitored, controlled and manipulated by build-
ing subsystems. Examples of physical substances are air, water and
natural gas. These can be further subclassed by their usage within
the building, for example “mixed air” is a subclass of “air” that refers
to the combination of outside and return air in an air handler unit.

Quantity is the root class for the lattice of quantifiable proper-
ties of substances and equipment. Examples of physical properties
include temperature, conductivity, voltage, luminance and pres-
sure. Subclassing quantities enables differentiation between types
of quantities, such as between Dry Bulb Temperature and Wet
Bulb Temperature.

Tag is a root class for the flat namespace of atomic tags supported
by Brick+. The majority of these tags are drawn from the Haystack
tag dictionary, and are instances of the Tag class.

4.4 Brick+ Relationships
Relationships express how entities and concepts can be composed
with one another; this is key to the consistent and extensible usage
of Brick+. For entities – the “things” in a building – composition
encapsulates functional relationships such as monitoring, control-
ling, manipulation, sequencing within a process, and physical and
logical encapsulation. Concepts are identified by classes and are
organized into a lattice by relationships.

As in Brick, relationships in Brick+ exist between a subject (the
entity possessing the relationship’s indicated property) and an object
(the entity that is the target of the property). Brick+ defines a set of
constraints for each relationship to ensure correct and consistent
usage between subject and object entities, without constraining the
application of the relationship to yet unknown scenarios.

All Brick relationships have at least one domain or range con-
straint determining the allowed classes for the subject or object.
Domain constraints limit the class of entities that can be the subject
of a relationship; range constraints limit the class of entities that can
be the object of a relationship. Brick defines domains and ranges of
relationships in terms of classes from the lattice. Brick+ supports
these definitions (enumerated in Table 2) and extends them such
that domains and ranges can be defined in terms of the properties
of the subject and object, rather than which sublattice they belong
to. This allows the definition of more fine-grained sub-relationships
with additional semantics.

For example, as in Table 2, the feeds relationship indicates the
passage of some substance between two pieces of equipment or
between an equipment and a location. If the subject of the feeds
relationship has the property that it outputs air, then the feeds
relationship can be specialized to the feedsAir sub-relationship.

4.5 Brick+ Tags
Brick+ addresses the consistency and interpretability issues of tag-
based metadata by explicitly binding Brick classes to sets of tags. In
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Figure 2: Portion ofBrick+ class lattice illustrating the equiv-
alence between tags and classes. Edges indicate which prop-
erties are added to each concept (class) to produce a new
class. Reverse edges (not pictured) are the subclass relation-
ships.

Brick, classes are human-interpretable because they have clear tex-
tual definitions; in Brick+, classes are additionally programmatically-
interpretable because they are identified by their position in the
class lattice and by the set of properties that define their behavior.
Clear definitions promote consistent usage.

Binding classes to tag sets effectively bounds the family of pos-
sible tag sets to those that have clear definitions. This removes the
burden of definition, validation and interpretation from the tag struc-
ture by outsourcing it to the class lattice, which permits the inference
of Brick+ classes from unstructured Haystack tags.

Although Brick also defines tags, Brick+ advances the implemen-
tation in several ways. Firstly, Brick+ removes the need for tags to
be lexically contained within the name of the class (the “TagSet”
construct in Brick). This decoupling allows the definition of classes
beyond what can be assembled through concatenation of tags, or
classes that do not have a straightforward tag decomposition; for
example, a Rooftop Unit equipment in Haystack has the rtu tag.

Secondly, Brick+ encodes tags so they can be inferred from a
Brick+ class and vice versa, even if a given entity’s definition is
given only by one or the other. Figure 3 illustrates three different
methods for instantiating an Air Temperature Sensor demon-
strating the flexibility of the Brick+ implementation. The classi-
fication of an entity can be performed explicitly using the a or
rdf:type predicate in conjunction with a Brick class, implicitly
through annotating an entity with the set of tags equivalent to a
Brick class, descriptively by annotating an entity with its behavioral
properties, or through a combination of these.

Figure 2 illustrates how tags, classes and properties define the
lattice for some subclasses of the Sensor class. Figure 4 shows
the implementation of the Supply Air Temperature Sensor
class: line 2 defines how Supply Air Temperature Sensor figs
into the Brick class lattice. Lines 4-17 defines the Supply Air
Temperature Sensor class as equivalent to entities that have the
sensor, temperature, air and supply tags. Lines 18-25 define the
Supply Air Temperature Sensor class as equivalent ot entities
that measure the Temperature property of the Supply Air sub-
stance.

4.6 Brick+ Substances and Quantities
Brick+ defines a lattice of substances and quantities that can be used
to describe the functionality of equipment and points. This permits
inference of more fine-grained semantic information from existing

1 # instantiate class explicitly
2 :sensor1 a brick:Air_Temperature_Sensor .
3
4 # instantiate a class implicitly through application of tags
5 :sensor1 brick:hasTag tag:Air .
6 :sensor1 brick:hasTag tag:Temp .
7 :sensor1 brick:hasTag tag:Sensor .
8
9 # combination of explicit class and tags
10 :sensor1 a brick:Temperature_Sensor .
11 :sensor1 brick:hasTag tag:Air .
12
13 # instantiation from behavior
14 :sensor1 a brick:Sensor .
15 :sensor1 brick:measures brick:Air .
16 :sensor1 brick:measures brick:Temperature .
17
18 # alternative instantiation from behavior
19 :sensor1 a brick:Temperature_Sensor .
20 :sensor1 brick:measures brick:Air .

Figure 3: Five equivalent methods of declaring sensor1 to be
an instance of the Brick Air Temperature Sensor class.

1 brick:Supply_Air_Temperature_Sensor a owl:Class ;
2 rdfs:subClassOf brick:Air_Temperature_Sensor ;
3 owl:equivalentClass [ owl:intersectionOf (
4 [ a owl:Restriction ; owl:hasValue tag:Sensor ;
5 owl:onProperty brick:hasTag ]
6 [ a owl:Restriction ; owl:hasValue tag:Temperature ;
7 owl:onProperty brick:hasTag ]
8 [ a owl:Restriction ; owl:hasValue tag:Air ;
9 owl:onProperty brick:hasTag ]
10 [ a owl:Restriction ; owl:hasValue tag:Supply ;
11 owl:onProperty brick:hasTag ] ) ],
12 [ owl:intersectionOf (
13 [ a owl:Restriction ; owl:hasValue brick:Temperature ;
14 owl:onProperty brick:measures ]
15 [ a owl:Restriction ; owl:hasValue brick:Supply_Air ;
16 owl:onProperty brick:measures ] ) ] .

Figure 4: OWL DL-compatible definition of the Brick Supply
Air Temperature Sensor class showing the explicit class
structure, tag equivalence and the use of substance and
quantity classes to model behavior

Brick models and allows equipment and points to be classified by
their behavior rather than by explicit classification.

The Brick+ substance class lattice is based upon the hierarchy
developed by Project Haystack. It classifies substances by phase of
matter (Gas, Liquid, Solid) and supports substances qualified by
their usage within a process: Air is a subclass of Gas, and Outside
Air and Mixed Air are subclasses of Air. This construction can
be extended to include new substances and subclasses of those
substances as used in different processes.

A key principle of the Brick+ implementation is every property
associated with a class must be inferrable from instances of that
class. Properties associated with classes include the set of tags that
are equivalent to the class (indicated by the hasTag relationship)
and the behavioral annotations of the class (indicated by relation-
ships like measures).

5 BRICK+ IMPLEMENTATION
Recall that the Brick+ class lattice models concepts by their behavior
and related tags as well as by explicit subclass relationships. The
lattice is defined by a family of relationships, supported by a set
of constraints that ensure correct and consistent usage between
subject and object entities without constraining the application of
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1 id: 'd83664ec RTU-1 OutsideDamper'
2 air: ✓
3 cmd: ✓
4 cur: ✓
5 damper: ✓

6 outside: ✓
7 point: ✓
8 regionRef: '67faf4db'
9 siteRef: 'a89a6c66'
10 equipRef: 'd265b064'

(a) Original Haystack entity from the Carytown reference model

1 :d83664ec brick:hasTag tag:Command . # cmd
2 :d83664ec brick:hasTag tag:Damper .
3 :d83664ec brick:hasTag tag:Outside .
4 :d83664ec brick:hasTag tag:Point .

(b) Intermediate RDF representation of the Haystack entity;
Haystack software-specific tags (e.g. cur, tz) are dropped.

1 :d83664ec_point brick:hasTag tag:Damper .
2 :d83664ec_point brick:hasTag tag:Command .
3 :d83664ec_point a brick:Damper_Position_Command . # inferred
4 :d83664ec_equip brick:hasTag tag:Air .
5 :d83664ec_equip brick:hasTag tag:Outside .
6 :d83664ec_equip brick:hasTag tag:Damper .
7 :d83664ec_equip a brick:Outside_Damper . # inferred
8 :d83664ec_point brick:isPointOf :d83664ec_equip . # inferred
9 :d83664ec_point brick:isPartOf :d265b064 # inferred

(c) Brick inference engine splits the entity into two components: the
explicit point and the implicit outside damper equipment.

Figure 5: The three stages of inferring a Brick model from a
Haystack model.

the relationship to yet unknown scenarios. This enables Brick+ to
define a formal inference from Haystack’s informal tags to formal
Brick classes.

To facilitate the development, testing and debugging of Brick+,
we created a Python framework that interprets a structured and
extensible abstract ontology specification into a Turtle-based im-
plementation. The framework is open source but its discussion is
beyond the scope of this paper.

This section presents an overview of the implementation of the
Brick+ ontology with a focus on the implementation of substances
and the inference procedure for converting Haystack tags to Brick
classes.

5.1 Substance Implementation
The inferred properties concerning substances are more complex to
account for the differences in usage. Because substances are classes,
it is possible to associate instances of substances with Brick entities.
This association helps applications model how entities behave in
relation to the same substance instance. For example, a Mixed Air
Temperature Sensor and a Mixed Air Damper could be related
through their respective measurement and regulation of the same
instance of Mixed Air. However, if a shared instance is not given
in the definition of the Brick model, an OWL DL reasoner cannot
infer the instantiation of an appropriate substance. Brick+ solves
this with punning [32].

Punning is a mechanism by which a class name can represent a
canonical instance of that class. This allows an OWL DL reasoner
can relate a punned substance to a property of an equipment or
point. Importantly, this does not prohibit the instantiation of sub-
stance instances if and when a Brick model supplies those. Line
15 of Figure 3 contains an example of an inferred substance for
instances of the brick:Air_Temperature_Sensor class.

5.2 Inference Procedure
In order to apply the Brick+ inference to Haystack entities, some
preprocessing is required. Firstly, the engine filters out Haystack
tags that do not contribute to the definition of the entity, including
data historian configuration (hisEnd, hisSize, hisStart), current
readings (curVal) and display names (disMacro, navName). Fig-
ure 5a shows an example of a “cleaned” Haystack entity containing
only the marker and Ref tags from the Carytown reference model.

Next, the engine transforms the Haystack entity into an RDF
representation that can be understood by the inference engine. The
engine translates each of the marker tags into their canonical Brick
form: for example, Haystack’s sp becomes Setpoint, cmd becomes
Command and temp becomes Temperature. The engine creates a
Brick entity identified by the label given by the Haystack id field,
and associates each of the Brick tags with that entity using the
brick:hasTag relationship. Figure 5b contains the output of this
stage executed against the entity in Figure 5a.

At this stage, the engine naïvely assumes a one-to-one mapping
between a Haystack entity and a Brick entity. This is usually valid
for equipment entities which possess the equip tag, but Haystack
point entities (with the point tag) may implicitly refer to equip-
ment that is not modeled elsewhere. Figure 5a is an example of a
Haystack point entity that refers to an outside air damper that is
not explicitly modeled in the Haystack model. The last stage of the
inference engine performs the “splitting” of a Haystack entity into
an equipment and point.

First, the inference engine attempts to classify an entity as an
equipment. The engine temporarily replaces all point-related tags
from an entity – Point, Command, Setpoint, Sensor – with the
Equipment tag, and finds Brick classeswith the smallest tag sets that
maximize the intersection with the entity’s tags. This corresponds
to themost generic Brick class. In our running example, the inference
engine would transform the entity in Figure 5b to the tags Damper,
Outside and Equipment. There are 12 Brick classeswith the Damper
tag, but only one class with both the Damper and Outside tags;
thus, the minimal Brick class with the maximal tag intersection is
Outside Air Damper. If the inference engine cannot find a class
with a non-negligable overlap (such as the Equipment tag), then
the entity is not equipment.

Secondly, the inference engine attempts to classify the entity as
a point. In this case, the engine does not remove any tags from the
entity, and finds the Brick classes with the smallest tag sets that
maximize the intersection with the entity’s tags. In our running
example, the minimal class with the maximal tag intersection is
Damper Position Command.

Figure 5c contains the two inferred entities output by thismethod-
ology. In the case where a Haystack entity is split into an eqiupment
and a point, the Brick inference engine associates the two entities
with the brick:isPointOf relationship (line 10 of Figure 5c). Ad-
ditionally, the inference engine translates Haystack’s Ref tags into
Brick relationships using the simple lookup-table based methodol-
ogy established in [4]. The inference engine applies these stages to
each entity in a Haystack model; the union of the produced entities
and relationships constitutes the inferred Brick model.
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1 22 23 86.4% 3 7.4% 4
2 147 168 89.8% 15 5.0% 6
3 149 145 73.8% 39 6.6% 7
4 2183 1755 86.7% 290 17.6% 46
5 6474 6236 93.0% 451 19.5% 41

Table 3: Results of inferring Brick entities from tagged
Haystack entities.

Ontology Inferred Properties
(Total) (Avg per entity)

Brick 122,552 2.94/35.44
Brick+ 201,266 4.79/35.55

Table 4: Number of inferred properties for all entities across
104 Brick models in Brick and Brick+.

6 EVALUATION
To evaluate Brick+, we examine how well the Brick+ inference
engine is able to extract and classify entities from a set of five
Haystack models. Brick+ is open-source and is in the process of
being adopted as the authoritative implementation of Brick. The
Brick+ ontology, generation framework, source code of the infer-
ence engine, and the Haystack dataset are all available online at
https://github.com/BrickSchema/Brick.

6.1 Source Haystack Models
We assemble a set of five Haystack models, each consisting of a set
of tagged entities. Haystack model 1 is the “Carytown” reference
model published by Project Haystack for a 3000 sq ft building in
Richmond, VA. Haystack models 2 and 3 are sample Haystack data
models with for complex buildings, and thus contain large numbers
of specialized and non-standard tags [9]. Haystack models 4 and 5
represent two office buildings on the UC Davis campus. Together,
these five Haystack models represent a diverse family spanning
small to large buildings, differing numbers of custom tags, and
different model modelers.

6.2 Haystack Inference Results
Table 3 contains the results of applying the Brick inference en-
gine to the five Haystack models. When the inference engine splits
Haystack entities into equipment and a point, the number of in-
ferred Brick entities can exceed the number of original Haystack
entities

The % Classified Entities column indicates the percentage of
Haystack entities that were successfully classified by the Brick in-
ference engine; the Unclassified Entities column contains the num-
ber of entities that were not classified. The majority of unclassified
entities were such due to the use of non-standard tags that have
no provided definition, and thus were not included in the Brick tag
structure. The lowest-performing Haystack model, Site 3, repre-
sents a data center and contained a number of specialized lighting,

HVAC and datacenter equipment and points that are not covered
by the existing Haystack tag dictionary.

To understand the impact of informal modeling practices on
interpretability and consistency, we examine the occurence of non-
standard tags in the five Haystack models; the results are contained
in the Avg % Custom Tags per Entity column and Unique Custom
Tags column, which shows the number of user-defined tags in each
building, showing the same trend. Models 4 and 5 contain a higher
incidence of custom tags because they contain detailed representa-
tions of HVAC systems, thus requiring additional vocabulary be-
yond what is defined in Haystack. The required vocabulary includes
HVAC concepts not yet defined in Haystack (e.g., differential
for differential pressure) and functional relationships outside
the Haystack’s scope, such as capturing spatial relationships.

Examination of the Haystack models reveals three patterns of
inconsistent tagging. Firstly, the lexical overlap of tags (detailed in
Table 1) leads to one tag being used incorrectly in place of another;
for example, using heat instead of heating. Secondly, because
there is no notion of a “sufficient” tag set for a concept, several
entities have ambiguous interpretations due to partial tagging. For
example, several entities have the differential tag, but do not
have a tag to clarify the quantity (e.g. pressure, temperature).
Thirdly, the lack of compositional rules resulted in the ad-hoc cre-
ation of site-specific “compound” tags: models 4 and 5 use a custom
spMax tag instead of the Haystack-defined sp and max tags to dif-
ferentiate between setpoints and parameters.

6.3 Brick Inference Results
To complete our evaluation of Brick+, we measure the number of
properties that can be inferred from the entities in existing Brick
models. Because Brick models already have a formal representation,
the inference engine does not need to apply the cleaning or splitting
phases of the inference procedure (§5) and can rely entirely upon
the existing features of the OWL DL reasoner.

We executed the HermiT [12] OWL reasoner on 104 existing
Brick models from the Mortar testbed [10] using the existing Brick
ontology and our proposed Brick+ ontology, and computed the
number of inferred properties. The results are summarized in Ta-
ble 4: Brick+ was able to infer almost 80,000 more properties than
Brick over the 42,681 entities contained in the Brick models. Brick+
was able to infer all the same properties as Brick, but was able to
infer tags and behavioral properties as well.

6.4 Discussion
Our results demonstrate that Brick+ is able to infer 73-93% of enti-
ties in Haystack models that follow a canonical tagging scheme, and
can infer more semantic properties about entities in Brick models
than the previous release of Brick. Recall that Brick+’s inference
engine does not currently infer all possible classes from a Haystack
model; rather, it formalizes a particular interpretation and organiza-
tion of Haystack tags applied to entities. Haystack tags in real-world
Haystackmodels are highly idiosyncratic, due in part to site-specific
invention of tags to cover concepts and relationships not defined in
the Haystack tag dictionary. This suggests that Brick+’s inference
engine will not be able to fully classify each Haystack entity without
additional automated metadata construction techniques [7, 17]. Our
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results support this hypothesis: an ontology-based inference engine
demonstrates decent performance against the informal Haystack
data model, but, as expected, custom tags inhibit inference.

7 CONCLUSION
Interoperability for building applications requires metadata stan-
dards that are semantically sound, rich and extensible. Tags provide
an intuitive and informal model, but lack rules for composition
and validation that enable consistent, interpretable usage. Brick+
constructs a compositional model of metadata where tags are part
of a type system with an underlying formalism based on lattice
theory. This enables new algorithmic methods for checking validity,
consistency and compositional correctness that is necessary for
building a new class of scalable and portable building applications.

This paper presents a qualitative analysis of the popular Haystack
tagging system and demonstrates how its ad-hoc nature inhibits
the consistent description of building systems. To address these
issues, we have introduced Brick+, a refinement of the Brick on-
tology with clear formal semantics that permits the inference of
well-defined classes from unstructured tags. Brick+ helps to bridge
the gap between existing ad-hoc, informal metadata practices and
interoperable formal systems; this establishes a foothold for the
continued co-development of the Brick and Haystack metadata
standards.
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