
Mortar: An Open Testbed for Portable Building Analytics
Gabe Fierro
UC Berkeley

gtfierro@cs.berkeley.edu

Marco Pritoni
Lawrence Berkeley National

Laboratory
mpritoni@lbl.gov

Moustafa AbdelBaky
UC Berkeley

moustafa@cs.berkeley.edu

Paul Raftery
UC Berkeley

p.raftery@berkeley.edu

Therese Peffer
UC Berkeley

tpeffer@berkeley.edu

Greg Thomson
UC Berkeley

thomsong@berkeley.edu

David E. Culler
UC Berkeley

culler@cs.berkeley.edu

ABSTRACT
Access to large amounts of real-world data has long been a barrier
to the development and evaluation of analytics applications for the
built environment. Open data sets exist, but they are limited in their
span (how much data is available) and context (what kind of data
is available and how it is described). Evaluation of such analytics
is also limited by how the analytics themselves are implemented,
often using hard-coded names of building components, points and
locations, or unique input data formats.

To advance the methodology for how such analytics are im-
plemented and evaluated, we present Mortar: an open testbed for
portable building analytics, currently spanning 90 buildings and
containing over 9.1 billion data points. All buildings in the testbed
are described using Brick, a recently developed metadata schema,
providing rich functional descriptions of building assets and sub-
systems. We also propose a simple architecture for writing portable
analytics applications that are robust to the diversity of buildings
and can configure themselves based on context. We demonstrate
the utility of Mortar by implementing 11 applications from the
literature.

CCS CONCEPTS
• Information systems→ Graph-based database models; Informa-
tion retrieval; •Computingmethodologies→Model development
and analysis;

KEYWORDS
Smart Buildings, Modeling and Analytics, Data Set

ACM Reference Format:
Gabe Fierro, Marco Pritoni, Moustafa AbdelBaky, Paul Raftery, Therese
Peffer, Greg Thomson, and David E. Culler. 2018. Mortar: An Open Testbed
for Portable Building Analytics. In The 5th ACM International Conference on

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
BuildSys ’18, November 7–8, 2018, Shenzen, China
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5951-1/18/11. . . $15.00
https://doi.org/10.1145/3276774.3276796

Systems for Built Environments (BuildSys ’18), November 7–8, 2018, Shenzen,
China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3276774.
3276796

1 INTRODUCTION
Building analytics applications vary in complexity from simple al-
gorithms that only require a few directly-related data streams to
algorithms using complex white- or grey-box models, requiring
detailed information about the building. This information typically
must be acquired from diverse sources, such as from a building
automation system, architectural and mechanical drawings, oper-
ations and maintenance documents, and human input from the
building operator. Implementations of analytics applications are
often done as “one-offs” because of the high degree of site-specific
application logic. For example, this logic can be based on the types
of subsystems in the building, the names of BMS points needed
for the application, and how those BMS points relate to spatial
elements of the building. As a result, many analytics algorithms go
largely untested and unevaluated beyond the handful of buildings
(or simulations) the algorithm was developed against.

This pattern produces implementations that suffer from bias and
have little generalizability [15]. A recent evaluation of U.S. building
energy benchmarking and transparency programs [24] found that
“indications of [energy] savings should be considered preliminary...
because of the limited period of analyses and inconsistencies among
analysis methods for the various studies.” This is a lost opportunity
for robust evaluations of analytical applications.

The existence of a large collection of building data would grant
data scientists, algorithm developers, and building managers the
opportunity to empirically evaluate their work on a more diverse
body of buildings. Standard, open data sets and workloads exist
in many other areas (such as TPC-C [30] for relational databases
and MNIST [19] for digit recognition). There are several existing
and prior efforts working to provide such an open data set for
buildings [6, 7, 12, 18, 23, 33]. However, these data sets are limited
in their span (howmuch data is available) and context (what kind of
data is available and how it is described), which limits their efficacy
for the evaluation of analytics applications.

In addition to the need for comprehensive, up-to-date, and well-
annotated data sets, we also need to make applications portable

BuildSys ’18, November 7–8, 2018, Shenzen, China G. Fierro et al.

in order to minimize the effort in running analytics applications
against different buildings. Portable applications can nimbly provide
retrocommissioning, fault detection, and diagnostics across a wide
range of buildings with minimal reconfiguration.

The goal of this work is to address these challenges by providing
an open testbed and a platform for storing, describing, updating,
discovering, and retrieving building data. The testbed currently
spans 90 buildings and contains over 9.1 billion data points. We
utilize and extend Brick [5], a recently developed metadata schema
that provides rich functional descriptions of building assets and
subsystems, to describe not only data streams but the mechanical,
electrical, logical, and functional context of those streams within
all buildings in the testbed. Using this standardized and extensi-
ble method of describing buildings, we show that it is possible to
create a data platform that can subsume the heterogeneous data
produced by the built environment. Further, we also present an
architecture for portable and extensible analytics applications that
leverages Brick to simplify the development and evaluation of these
applications across multiple buildings.

Together, the testbed and the portable architecture provide a plat-
form, namedMortar, which lowers the integration cost of deploying
new analytics applications and acts as a vehicle for reproducible
evaluations. We evaluate Mortar by implementing a representa-
tive set of analytics applications; these implementations as well as
the data sets and Brick models that are part of the testbed will be
released for others to leverage and build upon.

The proposed platform will serve as a repository of open-source,
vetted, and robust implementations of building analytics algorithms.
We intend for this platform to be used by algorithm developers and
researchers for the implementation and evaluation of analytics ap-
plications, and by building managers who upload and describe their
building data in order to run any available analytics to manage their
portfolio. The data, Brick models and libraries mentioned in this
paper are available as part of the Mortar platform (available online
at mortardata.org with creation of a free account); the platform will
soon support user-provided datasets and metadata models.

The contributions of this paper are:

(1) the design and implementation of a platform for the devel-
opment and evaluation of portable building analytics

(2) a modular and extensible architecture for portable analytics
applications

(3) a data set of 90 buildings containing over 9.1 billion data
points, where the relationships between data points are well
described and annotated using Brick models

The remainder of the paper is organized as follows. §2 provides a
brief background on Brick. §3 details the design and implementation
of Mortar. §4 presents the architecture of portable applications.
A detailed description of the building data sets is presented in
§5, followed by the evaluation of Mortar in §6. Related work is
presented in §7 and the paper concludes in §8 outlining future
work.

2 BRICK
Brick [5] is an open-source ontology providing a unified semantic
representation of building assets, subsystems, and the relationships

between them. Brick has two components: an extensible class hier-
archy representing the physical and logical entities in buildings, and
a minimal set of relationships that capture the connections between
entities. A Brick model of a building is a labeled, directed graph in
which the nodes are entities and the edges are relationships.

2.1 Why Brick?
Brick has several advantages over alternative metadata representa-
tions such as Project Haystack [1] and IFC [8].

(1) Completeness: Brick’s class hierarchy can describe the di-
verse array of equipment, points, subsystems, and other phys-
ical or logical assets found in buildings. The class hierarchy
can be extended to define new or unusual entities.

(2) Flexibility: by utilizing the class hierarchy and transitive
relationships in queries against Brick models, applications
can remain agnostic to the level of detail of a Brick model.
This allows applications to run on buildings whose Brick
model may not be fully specified, but contains the points
and relationships necessary for the application to run.

(3) Consistency: the minimal set of relationships defined by
Brick and the constraints defined by the Brick ontology help
reduce variability in how the same concepts are expressed
across independent Brick models.

(4) Queryability: applications use the powerful SPARQL [14]
language to query Brick models. SPARQL enables applica-
tions to traverse the complex and heterogeneous graph struc-
tures that typify Brick models and retrieve the information
they need to operate. [14] provides a full explanation of
the SPARQL language and [13] contains a discussion of the
application of SPARQL to Brick.

These properties make Brick an ideal candidate for addressing
the metadata-related shortcomings in existing platforms. Further,
Brick lays the foundation for developing and evaluating portable
analytics applications, which is described in details in §4.

2.2 Brick Extensions
Although the current 1.0.3 release of the Brick schema can describe
all of the equipment and points contained in the testbed, it does
not contain site-level properties such as building typology that are
helpful for qualifying sites. Table 1 lists the properties we have
added to Brick; these changes are being collected into a formal
proposal for inclusion into an upcoming release of Brick.

3 MORTAR
Mortar stands forModularOpenReproducibleTestbed forAnalysis
& Research. It provides a platform for the development and evalu-
ation of portable building analytics applications. Mortar contains
timeseries data consisting of historical values of the sensors, actua-
tors, setpoints and other data points for a large number of buildings.
Mortar manages a Brick model for each of these buildings which de-
scribes the properties of the building as well as the equipment, sen-
sors, subsystems and relationships within that building. Mortar also
includes a library of analytics applications, structured according
to the architecture detailed in Section 4. These applications access
timeseries data by executing queries against the Brickmodel to refer

Mortar: An Open Testbed for Portable Building Analytics BuildSys ’18, November 7–8, 2018, Shenzen, China

Property Definition
hasSite/isSiteOf brick:Site entity to capture points be-

longing to a single facility
noaa Nearest NOAA weather stations. Gives

rough location of site
area Floor area (typicallym2 or f t2). Can be

associated with brick:Site (for total
area) or brick:Floor, brick:Room, etc
for more fine-grained annotation

adjacentTo Adjacency for rooms, other spaces
uuid timeseries identifier used by BTrDB

hasUnit engineering units for the associated
timeseries

Table 1: Proposed set of Brick extensions for capturing build-
ing properties

to relevant data streams. This methodology enables portable ana-
lytics applications, made more robust through evaluation against
the diverse population of buildings in the testbed.

3.1 System Architecture
The architecture of Mortar is driven by the need to a) link historical
timeseries data with its context as captured by a Brick model, b)
execute code that retrieves segments of timeseries data filtered
by context, and c) provide those features at the scale of tens or
potentially hundreds of buildings.Mortar is assembled from a family
of open-source software. Mortar has four components as shown
in Figure 1: timeseries store, Brick model storage, query processor,
and application execution environment.

Timeseries storage: one of the critical features of the testbed is
its support for progressively updated data sets (“live” data). Building
managers and other users need to be able to upload recent data for
existing building points as well as upload historical data for newly
annotated building points.

The testbed manages the distribution and updating of data us-
ing a full timeseries database instead of distributing data in static
file form (such as CSVs). At the testbed’s current scale of over 145
GB of 64-bit floating-point values and 64-bit nanosecond-precision
timestamps, it is unreasonable to expect users to download the data
themselves. Many timeseries databases offer filtering and aggrega-
tion features that allow applications to specify and download just
the data they need for their execution. The process of appending
new data to an existing stream is also made much easier through
the use of a timeseries database.

Brick model storage: another key aspect of the architecture is
the storage of Brick models over time, and the integration of the
Brick model with the timeseries database. Mortar needs to store a
Brick model for each building and maintain the history of those
models as they are changed and updated. Brick models use the
brickframe:uuid property to tag a point in Brick with the stream
identifier for its historical data in the timeseries database. The Brick
model decouples the context and name of a point from its timeseries
representation, which opens the possibility for the testbed to change
the timeseries representation without affecting how applications
are run. This is helpful for maintaining continuity of data collection
through repairs and retrofits, processing data (e.g., for re-uploading

Figure 1: Mortar architecture

data with an adjusted calibration parameter), and in cases of fixing
errors (e.g., if the wrong data was uploaded for a building point).
In this way, Mortar supports the natural evolution of buildings.
Because the qualification and execution of applicationsmakes heavy
use of Brick queries, it is important that the storage medium for the
Brick model maintains low query response times despite a large
number of concurrent requests against a large number of buildings.

Query processor: the query processor exposes to applications
a unified interface for accessing both the timeseries database and
the Brick model storage. The query processor understands the
brickframe:uuid property binding the timeseries and Brick model
databases, and performs any caching and additional processing of
the query not performed by the timeseries or Brick model databases.
The interface itself is described in-depth in Section 4.2.

Application Execution Environment: Mortar’s query proces-
sor presents a network-facing API, so applications may be run
either in Mortar’s execution environment or locally on a client’s
computer. Placing the execution environment within Mortar re-
duces the amount of data and computation that needs to be done on
a client’s computer; development and execution of an application
can happen in a web-based frontend such as Jupyter Lab [16].

3.2 Implementation
Mortar is currently deployed on a small Kubernetes-managed clus-
ter; it contains Brick models for 90 buildings, over 9.1 billion data
points, and 11 applications.

Timeseries database: the testbed uses the BTrDB timeseries
database [4], which provides fast storage and retrieval of scalar-
valued timeseries data. BTrDB supports adding storage capacity
incrementally using the Ceph storage engine, allowing the testbed
to scale gracefully as the number of buildings and amount of data
in the testbed increases. BTrDB supports querying data at arbitrary
resolutions, grouping data using associative statistical aggregates
min, mean, max and count, as well as querying the raw data itself.

BuildSys ’18, November 7–8, 2018, Shenzen, China G. Fierro et al.

Brick model database: existing open-source RDF/SPARQL
databases do not perform well under a Brick model workload, often
taking seconds or even minutes to execute a single query on a
moderately-sized Brick model [13]. Thus, Mortar stores all Brick
models in HodDB [13], a Brick-specialized RDF/SPARQL database
and query processor that demonstrates good performance on the
testbed workload.

Query processor: the query processor1 is implemented in the
Go programming language and interacts directly with BTrDB and
HodDB, which are deployed on the same cluster. When the query
processor receives a request from a client, it evaluates the included
Brick queries to resolve the identifiers for timeseries streams in
BTDB, and then pulls the data from BTrDB at the desired resolution
for the desired segment of time. The query processor can simplify
the data cleaning process for the client by performing unit conver-
sion (e.g., converting all temperature data to Celsius) and aligning
timestamps of returned data (e.g., aligning hour-bucket aggregated
data to the top of the hour).

Application execution environment: clients interact with
the testbed through the query processor, which presents a network-
facing API implemented using GRPC. GRPC2 is an open-source
RPC framework with several key features:

(1) streaming data: GRPC makes it easy to stream large amounts
of data over a connection

(2) session management: GRPC supports cancellation of long-
running operations (such as fetching historical data) which
can help recover server resources if a client abandons a
request

(3) autogenerated client bindings: GRPC enables clients written
in most major programming languages to interact with the
testbed. Currently we have only generated bindings for the
Python programming language.

The query processor delivers all timeseries data to the client
encoded using Apache Arrow3, an efficient in-memory format for
columnar data designed to be language-independent. Apache Ar-
row will soon support zero-copy semantics, which, coupled with
Mortar’s on-server application execution environment, should im-
prove the performance of client applications. Additionally, the use
of Apache Arrow opens the possibility of integrating Mortar with
open-source projects for data science and machine learning such
as Pandas [22], Hadoop [32], and TensorFlow [2].

4 ANATOMY OF PORTABLE APPLICATIONS
Portability measures how easily a program can be moved from one
computing environment to another. In the context of building ana-
lytics, portability refers to how well a piece of code generalizes to
multiple heterogeneous buildings. Many available implementations
of building analytics are not portable due to hardcoded point names,
assumptions about the structure of a building and its subsystems, as-
sumptions about the availability of data, and tightly-coupled phases
of operation. These limitations are an inevitable consequence of

1We developed an improved version of the MDAL service [13], which is used in the
query processor mechanism.
2https://grpc.io/
3https://arrow.apache.org

how few real buildings are available for the development or evalua-
tion of analytics applications, which makes it difficult to perform a
robust evaluation.

In this section we describe the general structure of a portable
building analytics application designed to be executed against po-
tentially hundreds of buildings with very little configuration. We
decompose all Mortar applications into five components: qualify,
fetch, clean, analyze, and aggregate (see Figure 2). These are
executed in order by the platform when the application is invoked.

4.1 Application Requirements
The qualify component defines the metadata and data require-
ments of an application.Mortar evaluates these requirements against
all available buildings in order to determine the subset of buildings
against which the application can run (the execution set). The ratio
between the execution set and the total number of buildings in the
testbed provides a good measure of the portability of an application,
and can be used iteratively, to allow an application to cover more
buildings. Mortar forks an instance of the application for each site
in the execution set. Specifically, the qualify component checks

(1) constraints on building typology and other properties, such
as the number of floors in a building, floor area, climate, and
occupancy class

(2) data context constraints, such as the kinds of equipment in
the building and available relationships

(3) data availability constraints, including the amount of histor-
ical data and available data resolution

The first two constraints are defined using Brick queries. When
qualifying an application, Mortar evaluates these queries against
the Brick model for each site in the testbed; sites are placed in the
execution set if the Brick queries return results. An application can
use a set of Brick queries to implement a “decision tree” where the
application customizes its execution based on the information avail-
able in the Brick model, such as to distinguish between RTU-based
and AHU-based HVAC systems. Mortar evaluates data availability
constraints against the data streams identified by the Brick queries.

An example qualify specification for the “Rogue Zone Detec-
tion4” application is shown in Figure 3. The Brick query looks for
terminal units that expose air flow setpoints and sensors and relates
the terminal unit to the HVAC zone it conditions. Brick’s subclass
relationships allow the same query to be used to find systems with
a single air flow setpoint and those with a high/low setpoint dead-
band. In these cases where there is variability in the type of system
or what data is exposed, it is up to the application developer how
to deal with the difference: the developer can write more precise
Brick queries to simplify the application code to only deal with a
single type of system, or the developer can account for the potential
differences thereby covering more buildings.

4.2 Data Retrieval
Mortar runs the fetch component for each site in the execution
set. The fetch component performs the actual retrieval of data
from the timeseries database corresponding to the set of streams

4This application is described in more details in Section 6.1.

Mortar: An Open Testbed for Portable Building Analytics BuildSys ’18, November 7–8, 2018, Shenzen, China

fetch clean analyze

aggregatefetch clean analyze

fetch clean analyze

…

…

…

qualify

bldg1 bldg2 ...

 1

 1

 2

 3

 4

 2

 3

 4

Evaluate app requirements against
all available sites

Instantiate copy of app for every
qualified site
Fetch data for each site using
resolved Brick queries

After executing the independent
components of the app for each
site, deliver results

Figure 2: Architecture of a portable analytics application. An application consists of five segments: qualify which filters the
building corpus into the execution set, fetch, clean and analyzewhich are all executed once for each building in the execution
set, and aggregate which is executed once over all outputs of analyze.

1 queries:
2 required:
3 - >
4 SELECT ?vav ?sen ?sp ?sen_id ?sp_id FROM %s WHERE {
5 ?sp rdf:type/rdfs:subClassOf* brick:Air_Flow_Setpoint .
6 ?sen rdf:type/rdfs:subClassOf* brick:Air_Flow_Sensor .
7 ?equip rdf:type/rdfs:subClassOf* brick:Terminal_Unit .
8 ?sp bf:isPointOf ?equip .
9 ?sen bf:isPointOf ?equip .
10 ?sp bf:uuid ?sp_id .
11 ?sen bf:uuid ?sen_id .
12 ?equip bf:feeds+ ?zone .
13 ?zone rdf:type brick:HVAC_Zone .
14 };

Figure 3: YAML app specification for qualifying sites for
“Rogue Zone (Airflow)” application

identified by the Brick queries. The data retrieval request uses the
following parameters:

(1) “variable” definitions: these map a name to a Brick query
defining the context for a point and the desired engineering
units for that point (if known), and aggregation function
(min,max,mean,count, or raw).

(2) temporal parameters: defines the bounds on the data, desired
resolution, and if we want aligned timestamps.

The output of the fetch component is an object providing ac-
cess to the results of the Brick queries, the resulting timeseries
dataframes, and conveniencemethods for relating specific dataframes
based on the Brick context (for example, the setpoint timeseries
related to a given sensor timeseries).

Figure 4 has an example of the fetch component for the “Rogue
Zone Detection” application. The query requests 11 days of data
on air flow sensors and setpoints aggregated by mean in 10-minute
buckets. The Aligned flag is true, which means the returned time-
series data will have the same time base.

1 def run(site):
2 print 'running', site
3 data = {}
4 resp = client.query({
5 "Composition": ["airflow","setpoint"],
6 "Aggregation": {
7 "airflow": ["MEAN"],
8 "setpoint": ["MEAN"],
9 },
10 "Variables": {
11 "airflow": {
12 "Definition": """SELECT ?vav ?sen ?sen_id FROM %s WHERE {
13 ?sen rdf:type/rdfs:subClassOf* brick:Air_Flow_Sensor .
14 ?sen bf:isPointOf ?equip .
15 ?sen bf:uuid ?sen_id .
16 };""" % site,
17 "Units": units.CFM
18 },
19 "setpoint": {
20 "Definition": """SELECT ?vav ?sp ?sp_id FROM %s WHERE {
21 ?sp rdf:type/rdfs:subClassOf* brick:Air_Flow_Setpoint .
22 ?sp bf:isPointOf ?equip .
23 ?sp bf:uuid ?sp_id .
24 };""" % site,
25 "Units": units.CFM
26 },
27 },
28 "Time": {
29 "Start": "2015-05-01T10:00:00-07:00",
30 "End": "2015-05-12T10:00:00-07:00",
31 "Window": '10m',
32 "Aligned": True,
33 },
34 })
35 obj['obj'] = resp.serialized
36 obj['data'] = resp.df
37 yield obj_store.put(obj)

Figure 4: Python fetch step for “Rogue Zone (Airflow)” ap-
plication

4.3 Data Cleaning
The clean component is executed on the output of the fetch
component. The purpose of this component is to normalize the
timeseries data for the analyze component, which is executed
next. Common operations in the clean component are hole filling,

BuildSys ’18, November 7–8, 2018, Shenzen, China G. Fierro et al.

1 def run(objid):
2 data = obj_store.get(objid)
3 data['cleaned'] = data['data'].dropna() # drop null values
4 return obj_store.put(data)

Figure 5: Simple Python clean step to drop null values (peri-
ods of missing data)

1 def run(objid):
2 data = obj_store.get(objid)
3 resp = deserialize(data['obj'])
4 df = data['data']
5 # loop through data columns
6 for sensor in resp.mapping['airflow']:
7 # find the setpoint corresponding to this sensor
8 setpoint = resp.find(sensor, join_on='?vav', extract='?sp_id')
9 dd = df[[sensor, setpoint]]
10 dd.columns = ['airflow','setpoint']
11 if len(dd[dd.airflow < dd.setpoint]):
12 bad = dd.airflow < dd.setpoint
13 # get runs of airflow being below setpoint
14 dd['same'] = bad.astype(int).diff(1).cumsum()
15 groups = dd.groupby('same').groups
16 for key, grp in groups.items():
17 print 'VAV {0} had high airflow from {1} to {2}'
18 .format(resp.context[sensor]['?vav'], grp[0], grp[-1]

Figure 6: Python analyze step to find periods when the mea-
sured airflow is lower than the setpoint in the Rogue Zone
Airflow application

specialized aggregation, and data filtering. It is kept modular to fa-
cilitate the re-use of standard cleaning steps. Application developers
can build their own cleaning components or leverage existing meth-
ods. A simple example of a clean component that drops missing
data is presented in Figure 5.

4.4 Application Execution
The analyze component contains the actual application logic and
is also executed for each site in the execution set. It can optionally
output a result that is delivered to the final component. Figure 6
contains the logic of the “Rogue Zone Detection” application. It
finds contiguous segments of time during which the measured
airflow is lower than the airflow setpoint.

The aggregate component is an optional component that is
executed once for an application, and takes as an argument the
output of the analyze component from all sites. This is where an
application can perform any final aggregation or analysis across
sites.

5 THE MORTAR DATASET
As of writing, Mortar contains 9.1 billion data points of timeseries
data for 90 buildings, constituting more than 750 million hours of
data. The majority of data streams in Mortar are at a 15-minute
interval, though some are more fine-grained (up to 1-second).

Figure 7 describes the distribution of the number of streams
per building. Each building is accompanied by a Brick model that
describes the building, its equipment and subsystems, available
points, and references to timeseries data streams. The Brick models
in theMortar data set range in size from 2,117 to 8,763 nodes. Table 2
enumerates some of the types of available points and equipment in
the testbed.

Figure 7: Histogram of number of data streams for all sites
(µ =241).

Temperature Sensor 7380 Luminance Sensor 257
Occupancy Sensor 445 Pressure Sensor 148

Outside Air Temp. Sensor 362 Cloud Cover 32
Setpoints (generic) 2331 Power Meters 77

VAVs 4724 AHUs 467
HVAC Zones 4887 Dampers 1662

Non BMS Thermostats 123
Table 2: Count of streams and equipment available in the
testbed data set, aggregated by type. AHU and VAV totals in-
clude related equipment such as fans and pumps.

Depending on what data is available, Brick models are generated
from Building Information Modeling (BIM) models of buildings,
architectural diagrams, site visits, and interviews. The framework
for generating Brick models is open-source5, and aims to integrate
with a more mature Brick model generation framework such as
Scrabble [17].

The majority of the dataset is made up of large commercial build-
ings belonging to a university campus. The buildings are typically
used as offices, classrooms, research facilities and health care clinics.
The average building has a floor area of 70,000 sqft, 3 floors and
more than 100 rooms, while the largest building is a large library
with a floor area above 400,000 sqft. Most buildings are conditioned
using large built-up HVAC systems with air handlers and local dis-
tribution boxes, controlled by building automation systems. Chilled
water and hot water are produced by a central plant and distributed
through large pipes to most buildings. Some additional chillers are
installed in some buildings to complement the central system.

Other buildings in the data set come from a set of independent
data collecting efforts. Most of the non-campus buildings are part
of an ongoing project to develop a building operating system; these
are mostly small commercial buildings ranging from movie the-
atres to fire stations to animal shelters. Data collected includes
thermostats, building meters, occupancy, temperature, illumination
and humidity sensors, electric vehicle charging stations and solar
panels.

An important concern is the anonymization of the data in the
testbed. Mortar anonymizes the names and locations of buildings
(using nearby NOAA weather stations to indicate general location)

5https://github.com/gtfierro/BrickMason

Mortar: An Open Testbed for Portable Building Analytics BuildSys ’18, November 7–8, 2018, Shenzen, China

and the names of entities in the Brick metadata model. Future
releases ofMortarwill support the selective deanonymization of this
metadata to authorized users. Mortar does not currently anonymize
the timeseries data values; because Mortar supports continuous
data collection, it is difficult to apply existing best-practices such
as differential privacy.

6 EVALUATION
The key contribution of this paper is a testbed for the robust im-
plementation and evaluation of portable building analytics appli-
cations. In order to evaluate the efficacy of Mortar, we have imple-
mented a family of 11 applications. We chose these applications
to exercise the ability to pull data from buildings using queries
against a Brick model, and also to make use of the proposed archi-
tecture for portable applications. To test the former, we implement
applications that require the use of Brick relationships to properly
describe the data needed to run the application. To test the latter,
we implement all applications using the decomposed architecture
proposed in Section 4; some of the applications involve similar or
identical logic and can re-use each other’s components, using Brick
queries to adjust the source data.

6.1 Applications
In this section we provide a brief description of the applications
that were used to evaluate Mortar. All applications are implemented
in the Python programming language, which allows application
developers to make use of the mature set of data science and statis-
tics libraries available. A summary of the implementations of these
applications is provided in Table 3. The portable implementations
of these applications will be released in tandem with the data set,
forming the beginning of an open library of analytics applications.

1. BaselineCalculation: this application ports an existing open-
source package (LBNL-baseline6), which implements a baseline cal-
culation algorithm [21], to Mortar. The package requires access to
electric load data as well as outside temperature data when available,
which is retrieved using a simple Brick query. Porting this appli-
cation to Mortar allows us to easily compare a predicted baseline
with historical data across a variety of sites with differing climates,
construction, and usage patterns. Some results of this application
are in Figure 10.

2. Baseline Deviation: we made use of the modular implemen-
tation of the Baseline Calculation application to implement this
application. In particular, we modified the main component from
the Baseline Calculation application (keeping the rest of the stages)
to compare measured energy consumption with the predicted base-
line to identify periods of abnormally high consumption.

3. Energy Usage Intensity (EUI) Calculation: the calculation
of EUI involves dividing the yearly energy consumption of a build-
ing in kilowatt-hours by the total floor area of that building. This
metric is often used to benchmark buildings. Our implementation
of EUI uses a Brick query to discover what kind of building energy
consumption data is available. In the current data set, sites report
consumption either through an instantaneous demand meter such
as a Rainforest Eagle7 or through an energy bill such as PG&E’s

6https://github.com/LBNL-ETA/loadshape
7https://rainforestautomation.com/rfa-z114-eagle-200/

“Share My Data” service. The floor area of a building can also be
captured in the Brick model using the extensions from Table 1.
The logic of the application retrieves a year of data, performs the
appropriate calculation (either a conversion from instantaneous
power data to kWh or a simple sum of regular kWh readings) and
divides it by the total floor area retrieved from the Brick model.

4. HVAC Energy Disaggregation: this application estimates
the energy consumption of equipment by correlating changes in
electrical demand (through the use of a building-level meter or
submeter) with changes in HVAC equipment state. In the case of
binary state points (e.g. Compressor On Off Status), the disag-
gregation application can estimate the total energy usage of a piece
of equipment. The disaggregation application could then make use
of any available weather and internal temperature data in order
to identify any change in efficiency in the equipment’s operation
corresponding to changes of environmental variables. Our imple-
mentation leverages the Brick class hierarchy to find all points of
type Status that relate to equipment in the building; the result-
ing queries can easily be refined to look only at specific classes or
instances of equipment such as only single-stage or multi-stage
equipment.

5. Thermal Model Identification: this application trains a
zone-level thermal model using zone- and room-level (using ad-
ditional sensors, if present) temperature sensing, outside air tem-
perature, cloud coverage, HVAC equipment state data and, when
available, adjacency information. The implementation uses Brick
queries to determine what information is available such as the
number of zones, the temperature sensing in those zones, HVAC
equipment conditioning those zones, and available weather data.

6. Rogue/Critical Zone Temperature: this application detects
rogue zones, which are thermal zones whose temperature consis-
tently measures outside of the setpoint temperature band; this can
be caused by thermal loads larger than design conditions, incor-
rect setpoints and/or broken sensors or equipment [9]. For critical
zones, it indicates that the air temperature leaving the AHU should
be lower/higher. In large HVAC systems these zones can cause an
increase in the energy use of the entire air handling units, due to
increased reheat in the other zones. The detection of rogue zones
can also be used to improve control sequences.

7. Rogue/Critical ZoneAirflow: this application detects rogue
zones whose airflow is consistently below the airflow setpoint. It
uses Brick models to pull in additional context about the building.
The airflow setpoints and sensors can be related through the HVAC
infrastructure to the zones containing the rooms affected by the
reduced airflow. This information is typically used as an input to
the duct static pressure controller on the air handling unit serving
these zones.

8. StuckDamperDetection: this application performs the com-
mon fault-detection task of identifying dampers whose position has
not changed in weeks or months. Our implementation automates
the task of finding the damper position status streams and identi-
fies the HVAC zones and rooms affected by the damper. For zones
with discharge airflow sensors the application can also test if the
damper appears to work correctly, but the amount of air supplied
does not change with its position. This can indicate a faulty sensor
or a broken linkage between actuator and the physical damper.

BuildSys ’18, November 7–8, 2018, Shenzen, China G. Fierro et al.

Category Application Brick LOC App LOC # buildings % coverage

Measurement, Verification &
Baselining

Baseline Calculation 3 120 33 37%
EUI Calculation 10 100 7 8%

HVAC Energy Disaggregation 14 124 14 16%
Thermal Model Identification 17 339 17 19%

Fault Detection & Diagnosis

Rogue Zone Temperature 15 104 56 62%
Rogue Zone Airflow 7 98 3 3%
Baseline Deviation 3 204 14 16%

Stuck Damper Detection 8 91 30 33%
Obscured/Broken Lighting Detection 11 100 2 2%

Advanced Sensing Virtual Coil Meter 14 150 60 67%
Chilled Water Loop Total Electrical Consumption 17 160 15 17%

Table 3: Applications: Brick LOC and App LOC indicate the lines of code needed to define the Brick queries and application
logic, respectively. “% coverage” is what proportion of the testbed’s buildings qualified for that application; the corresponding
number of buildings is in the “# buildings” column.

9. Obscured Lighting Detection: this application groups light-
ing status points for a lighting zone with luminance sensors in that
zone in order to build a correlation between time, lighting status,
and luminance. Deviations from this model can be used to identify
broken or obscured fixtures and luminaires.

10. Virtual Coil Meter this application estimates the amount
of heat energy used by a heating or cooling coil by performing a
calculation over upstream and downstream air temperature sen-
sors, air flow sensors, and the position of the valve in the coil [28].
The portable implementation of this application discovers these
points through querying the Brick model for a building for their
relationships to each other and the building’s HVAC system.

11. ChilledWater Loop Total Electrical Consumption: this
application examines all equipment on a chilled water loop and
sums the electrical consumption of any component found on that
loop. Assembling this collection of equipment and related building
points without a Brick model involves a high degree of manual
effort that does not carry over when porting the application to
other buildings.

6.2 Results & Discussion
The open building testbed presents an opportunity to compare
multiple buildings in a portfolio, measure the portability of an
application, measure the accuracy or performance of an application,
compare the performance of similar applications, and automate
tedious re-configuration when porting an application to different
buildings. To demonstrate these features, we examine the results of
running a few applications from Table 3 against the Mortar testbed.

First, we examine the accuracy of the building energy estimation
baseline algorithm from [21] across winter and summer seasons
(Figure 9). In winter, the mean squared error of the baseline predic-
tion compared to a week’s ground truth increases with the floor area
of the building. Because the positive correlation between square
footage of the building and the error in energy prediction suggests
that larger buildings have more variability in their loads than the
baseline estimation algorithm is able to account for; the higher error
in the winter months compared to summer months additionally
suggests a seasonality to this error. A more thorough evaluation
of the baseline estimation algorithm is beyond the scope of this

Figure 8: Distribution of EUI across the Mortar portfolio

Figure 9: Comparing the mean squared error of building en-
ergy consumption prediction using the baseline from [21]
trained and evaluated on summer months (+) versus winter
months (•).

paper, but this initial result demonstrates the value of being able to
evaluate an analytics algorithm over a large corpus of buildings.

The Thermal Model application is a good example of how ap-
plications can change their behavior based on the information
available in a building. The qualify step looks for buildings with
thermostats and RTUs with or without room-level temperature
sensors. In the case when only thermostats are available, the ap-
plication can provide a zone-level thermal model that runs on 17

Mortar: An Open Testbed for Portable Building Analytics BuildSys ’18, November 7–8, 2018, Shenzen, China

Name Year Available Data Updates Metadata
Building Genome
Project [23]

2017 non-residential building electric meter data rare building typology

CBECS [12] 2016 building energy usage, systems and equipment survey 4-10 year cycle building typology
NILMTK [7] 2014 high-frequency building electric meter data, equipment

state
rare labels and electrical subsys-

tem
Smart* [6] 2012 electrical meter data, temperature and humidity sensors,

applicance state for residential buildings
yearly releases labels only

REDD [18] 2011 full building and device-level electrical meter data none electrical subsystem
BASE [33] 1995 temperature and humidity sensors, HVAC equipment

and sensors
none building typology, HVAC

system
GREEND [25] 2013 device-level electrical meter none appliance labels
Pecan St Data-
port [27]

2011-2018 building and appliance level electric, gas, and water data
for residential buildings

unspecified building typology, equip-
ment labels

REFIT [26] 2013-2015 high frequency electric building and appliance level
meter data

none building typology, appli-
ance labels

Table 4: Some open data sets of building data. “Labels only” means the data set’s metadata only identifies a timeseries with
a label and little or no contextual metadata. “Building typology” means the data set’s metadata only deals with high-level
information about the building such as occupancy class, climate and floor area.

buildings from the testbed. For buildings where room-level temper-
ature sensors are available, the application takes those into account
to provide a more fine-grained room-level thermal model, but this
only runs on 3 buildings from the testbed. If the application were
to be extended with a thermal modeling approach for AHU-based
systems with heating and cooling coils, then the thermal model
application would operate over all 90 buildings.

The Mortar testbed also presents the opportunity to examine
building performance across a portfolio. In Figure 8, we plot the
distribution of EUI over the whole testbed portfolio; users could
adjust the Energy Use Intensity application qualify step to filter
by different building properties, such as climate and square footage.
The inclusion of building properties in the Brick model for each
building facilitates this flexible portfolio management.

Mortar also lets users skip tedious configuration steps. Without
the use of a Brick model, assembling the points for the Chilled
Water Loop Total Electrical Consumption application requires site-
specific knowledge as to what power meters are present in the
building, what equipment they measure, and whether or not that
piece of equipment is related to a particular chilled water loop.
Performing this assemblage over a large building portfolio can be
unmanageable.

7 RELATEDWORK
Existing building benchmarking data sets (Table 4) are static, sparse,
and/or lack sufficient context to implement potentially complex
analytics. Further, there is no standard adopted naming scheme
to tie these data sets together, which hinders the portability of
any application developed against a single platform. In contrast,
Mortar provides data sets that are continuously updated, and well
annotated. Further, many of the existing data sets can be easily
integrated in Mortar by representing their metadata using a Brick
model and ingesting any included timeseries data. Executing and
automating this process is the subject of future work.

Also related are a family of analytics platforms for building data
and the smart grid. Commercial platforms like Skyspark [29] and

(a)

(b)

(c)

Figure 10: Baseline prediction app: Predicted baseline using
[21] plotted against actual building energy consumption.

BuildingOS [20] offer a mixture of pre-built standard analytics
and composable rules and operators for user-defined analytics.
Some of these platforms require analytics to be implemented in
a proprietary or custom programming language, which limits the
types of tools that can be used to develop analytics. There are
also several academic building operating systems that implement
building and smart-grid analytics [3, 10, 11, 31].

The proposed portable analytics applications architecture en-
ables users to develop applications (or port existing ones) using
standard, open-source tools and frameworks, and integrate these
applications into the Mortar platform. Further, Mortar allows users
to add their own buildings to the testbed, and will assist them with
the creation of the Brick model. Documenting and automating this
process is the subject of future work.

8 CONCLUSION & FUTUREWORK
In this paper, we have presented the design and implementation of
an open testbed for portable building analytics (Mortar), a diverse
corpus of timeseries data and Brick models spanning multiple build-
ing classes (Mortar data set), and an architecture for implementing

BuildSys ’18, November 7–8, 2018, Shenzen, China G. Fierro et al.

portable analytics applications (Mortar portable applications). Mor-
tar utilizes and extends Brick, a graph-based metadata model, to
describe the relationships between data streams and to facilitate
application portability. We have developed 11 applications from the
literature to evaluate Mortar. The evaluation shows that Mortar can
run a single application against multiple buildings to a) compare
the performance of multiple buildings in a portfolio (EUI score), b)
measure and improve application coverage across buildings, and c)
measure the application performance or accuracy (e.g., mean error).
Further, we have showed that Mortar allows application developers
to significantly reduce the manual labor involved in developing
and deploying an application against multiple buildings, or com-
pare the performance of two algorithms for a given application.
Our goal is that Mortar will be used as a standard benchmarking
platform for implementations of new and established analytics al-
gorithms, leading to a new generation of robust, portable analytics
with reproducible evaluations.

There are several areas of future work that will improve the
usability and security of Mortar. Firstly, we are working on inte-
grating privacy-preserving techniques for sharing continuously
updated timeseries data. We are also improving the process for
integrating new sources of timeseries data and metadata into the
testbed. Mortar is available at mortardata.org.

9 ACKNOWLEDGEMENTS
This research is supported in part by California Energy Commis-
sion EPC-15-057, Department of Energy grant EE-0007685 and the
CONIX Research Center, one of six centers in JUMP, a Semiconduc-
tor Research Corporation (SRC) program sponsored by DARPA. The
opinions expressed belong solely to the authors, and not necessarily
to the authors’ employers or funding agencies.

REFERENCES
[1] 2018. Project Haystack. http://project-haystack.org/. (2018).
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

[3] Yuvraj Agarwal, Rajesh Gupta, D Komaki, and Thomas Weng. 2012. Buildingde-
pot: an extensible and distributed architecture for building data storage, access
and sharing. BuildSys ’12 (2012), 64–71. https://doi.org/10.1145/2422531.2422545

[4] Michael P Andersen and David E Culler. 2016. BTrDB : Optimizing Storage
System Design for Timeseries Processing. Section 3 (2016), 39–52.

[5] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh,
J. Ploennigs, Y. Agarwal, M. Berges, D. Culler, R. Gupta, M.B. Kjærgaard, M. Sri-
vastava, and K. Whitehouse. 2016. Brick: Towards a unified metadata schema for
buildings. In Proceedings of the 3rd ACM Conference on Systems for Energy-Efficient
Built Environments, BuildSys 2016. https://doi.org/10.1145/2993422.2993577

[6] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht. 2012.
Smart*: An Open Data Set and Tools for Enabling Research in Sustainable Homes.
SustKDD August (2012), 6. https://doi.org/adf

[7] Nipun Batra, Jack Kelly, Oliver Parson, Haimonti Dutta, William Knottenbelt,
Alex Rogers, Amarjeet Singh, and Mani Srivastava. 2014. NILMTK: An Open
Source Toolkit for Non-intrusive Load Monitoring. (2014), 265–276. https:
//doi.org/10.1145/2602044.2602051 arXiv:1404.3878

[8] Vladimir Bazjanac and Drury B. Crawley. 1999. Industry Foundation Classes
and Interoperable Commercial Software in Support of Design of Energy-Efficient
Buildings. 5th IBPSA April (1999), 7. http://www.ibpsa.org/

[9] Arka A. Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, KaminWhitehouse,
and Eugene Wu. 2015. Automated Metadata Construction to Support Portable
Building Applications. Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments - BuildSys ’15 (2015),
3–12. https://doi.org/10.1145/2821650.2821667

[10] Bin Cheng, Salvatore Longo, Flavio Cirillo, Martin Bauer, and Ernoe Kovacs.
2015. Building a Big Data Platform for Smart Cities: Experience and Lessons

from Santander. Proceedings - 2015 IEEE International Congress on Big Data,
BigData Congress 2015 December 2016 (2015), 592–599. https://doi.org/10.1109/
BigDataCongress.2015.91

[11] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar,
Gabe Fierro, Nikita Kitaev, and David E Culler. 2013. BOSS: Building Operating
System Services.. In NSDI, Vol. 13. 443–458.

[12] EIA. 2016. Commercial Buildings Energy Consumption Survey (CBECS) User’s
Guide to the 2012 CBECS Public Use Microdata File. 2016, August (2016). https://
www.eia.gov/consumption/commercial/data/2012/index.cfm?view=microdata

[13] Gabe Fierro and David E Culler. 2017. Design and Analysis of a Query Processor
for Brick. Proceedings of the 4th ACM International Conference on Systems for
Energy-Efficient Built Environments 1, 1 (2017), 11:1—-11:10. https://doi.org/10.
1145/3137133.3137155

[14] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. 2013. SPARQL 1.1 query
language. W3C recommendation 21, 10 (2013).

[15] Eamonn Keogh and Shruti Kasetty. 2002. On the need for time series data mining
benchmarks. Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’02 (2002), 102. https://doi.org/10.
1145/775047.775062

[16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol
Willing. 2016. Jupyter Notebooks – a publishing format for reproducible com-
putational workflows. In Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87 – 90.

[17] Jason Koh, Dhiman Sengupta, Julian McAuley, Rajesh Gupta, Bharathan Balaji,
and Yuvraj Agarwal. 2017. Scrabble: Converting Unstructured Metadata into
Brick for Many Buildings. In Proceedings of the 4th ACM International Conference
on Systems for Energy-Efficient Built Environments (BuildSys ’17). ACM, New York,
NY, USA, Article 48, 2 pages. https://doi.org/10.1145/3137133.3141448

[18] J Zico Kolter and Matthew J Johnson. 2011. REDD : A Public Data Set for
Energy Disaggregation Research. SustKDD workshop xxxxx, 1 (2011), 1–6. http:
//users.cis.fiu.edu/{~}lzhen001/acti

[19] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2
(2010).

[20] Lucid. 2018. BuildingOS. (2018). https://lucidconnects.com
[21] Johanna L Mathieu, Phillip N Price, Sila Kiliccote, and Mary Ann Piette. 2011.

Quantifying changes in building electricity use, with application to demand
response. IEEE Transactions on Smart Grid 2, 3 (2011), 507–518.

[22] Wes McKinney. 2011. pandas: a Foundational Python Library for Data Analysis
and Statistics. (2011).

[23] Clayton Miller and Forrest Meggers. 2017. The Building Data Genome Project:
An open, public data set from non-residential building electrical meters. Energy
Procedia 122 (2017), 439 – 444. https://doi.org/10.1016/j.egypro.2017.07.400 {CIS-
BAT} 2017 International ConferenceFuture Buildings & Districts âĂŞ Energy
Efficiency from Nano to Urban Scale.

[24] Natalie Mims, Steven R Schiller, Elizabeth Stuart, Lisa Schwartz, Chris Kramer,
and Richard Faesy. 2017. Evaluation of U.S. Building Energy Benchmarking
and Transparency Programs: Attributes, Impacts, and Best Practices. (2017).
https://doi.org/10.2172/1393621

[25] AndreaMonacchi, Dominik Egarter,Wilfried Elmenreich, Salvatore D’Alessandro,
and Andrea M Tonello. 2014. GREEND: an energy consumption dataset of
households in Italy and Austria. In Smart Grid Communications (SmartGridComm),
2014 IEEE International Conference on. IEEE, 511–516.

[26] David Murray, Lina Stankovic, and Vladimir Stankovic. 2017. An electrical
load measurements dataset of United Kingdom households from a two-year
longitudinal study. Scientific data 4 (2017), 160122.

[27] Pecan St . 2018. Dataport website. (2018). https://dataport.cloud/
[28] Paul Raftery, Shuyang Li, Baihong Jin, Min Ting, Gwelen Paliaga, and Hwakong

Cheng. 2018. Evaluation of a cost-responsive supply air temperature reset strategy
in an office building. Energy and Buildings 158 (2018), 356–370. https://doi.org/
10.1016/j.enbuild.2017.10.017

[29] Analytic Rules, Comprehensive Library, Analytic Functions, and Full Programma-
bility. 2012. SkySpark ® Analytic Rules : Combining a Comprehensive Library of
Analytic Functions with Full Programmability The Tools Your Need to Address
Your Applications. (2012).

[30] Transaction Processing Performance Council. 2018. TPC-C Benchmark Revision
5.11.0. (2018). http://www.tpc.org/tpc_documents_current_versions/current_
specifications.asp

[31] ThomasWeng, Anthony Nwokafor, and Yuvraj Agarwal. 2013. BuildingDepot 2.0.
Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient
Buildings - BuildSys’13 (2013), 1–8. https://doi.org/10.1145/2528282.2528285

[32] Tom White. 2012. Hadoop: The definitive guide. " O’Reilly Media, Inc.".
[33] S E Womble, J R Girman, E L Ronca, R Axelrad, H S Brightman, and J F Mccarthy.

1995. Developing Baseline Information on Buildings and Indoor Air Quality
(BASE ’94). Part II (1995), 1–8.

