
Plaster: An Integration, Benchmark, and Development
Framework for Metadata Normalization Methods
Jason Koh∗

University of California, San Diego
jbkoh@eng.ucsd.edu

Dezhi Hong∗
University of Virginia
hong@virginia.edu

Rajesh Gupta
University of California, San Diego

gupta@eng.ucsd.edu

Kamin Whitehouse
University of Virginia

whitehouse@virginia.edu

Hongning Wang
University of Virginia
hw5x@virginia.edu

Yuvraj Agarwal
Carnegie Mellon University

yuvraj@cs.cmu.edu

ABSTRACT
The recent advances in the automation of metadata normaliza-
tion and the invention of a unified schema — Brick — alleviate
the metadata normalization challenge for deploying portable ap-
plications across buildings. Yet, the lack of compatibility between
existing metadata normalization methods precludes the possibility
of comparing and combining them. While generic machine learning
(ML) frameworks, such as MLJAR and OpenML, provide versatile
interfaces for standard ML problems, they cannot easily accom-
modate the metadata normalization tasks for buildings due to the
heterogeneity in the inference scope, type of data required as in-
put, evaluation metric, and the building-specific human-in-the-loop
learning procedure.

We propose Plaster, an open and modular framework that in-
corporates existing advances in building metadata normalization.
It provides unified programming interfaces for various types of
learning methods for metadata normalization and defines stan-
dardized data models for building metadata and timeseries data.
Thus, it enables the integration of different methods via a workflow,
benchmarking of different methods via unified interfaces, and rapid
prototyping of new algorithms. With Plaster, we 1) show three ex-
amples of the workflow integration, delivering better performance
than individual algorithms, 2) benchmark/analyze five algorithms
over five common buildings, and 3) exemplify the process of devel-
oping a new algorithm involving time series features. We believe
Plaster will facilitate the development of new algorithms and ex-
pedite the adoption of standard metadata schema such as Brick, in
order to enable seamless smart building applications in the future.

CCS CONCEPTS
• Information systems→ Entity resolution; • Computer sys-
tems organization → Sensors and actuators;

∗Co-primary authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BuildSys ’18, November 7–8, 2018, Shenzhen, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5951-1/18/11.
https://doi.org/10.1145/3276774.3276794

KEYWORDS
smart buildings, metadata, machine learning, benchmark
ACM Reference Format:
Jason Koh, Dezhi Hong, Rajesh Gupta, KaminWhitehouse, HongningWang,
and Yuvraj Agarwal. 2018. Plaster: An Integration, Benchmark, and Devel-
opment Framework for Metadata Normalization Methods. In The 5th ACM
International Conference on Systems for Built Environments (BuildSys ’18),
November 7–8, 2018, Shenzhen, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3276774.3276794

1 INTRODUCTION
Smart Buildings have been a major preoccupation of researchers to
optimize the energy usage and improve the occupants’ comfort as
well as the productivity in buildings [43]. Despite the promise over
a decade, instrumentation of buildings lags significantly behind,
adopted in far less than 20% of the buildings nationwide [2]. This is
because of the challenge of connecting sensor data to its semantic
context [31]. Smart building applications, such as thermal comfort
optimization, fault detection and diagnosis, and model predictive
control [13, 36, 37], typically connect to and pull data from the
points1 in a building in order to monitor and access the operations
of the building. For example, an application involving a terminal
HVAC unit in a room needs to locate the room and its associated
points such as on/off commands for the VAV. However, the con-
textual information of points (e.g., what they measure and how
they are related to each other) required by applications to fetch
and interpret the data is often lacking — the metadata of point is
historically designed mainly for handcrafted control loops, not to
be machine-parsed or directly consumed by external software; and
the metadata convention varies across sites, if one even exists. To
fully realize the potential of smart building applications, a system
would need to be able to quickly discover the points and interpret
their data in a building in a standardized and uniform way. Doing
so would require a common metadata schema for buildings.

Typically, a building metadata schema defines a structure for rep-
resenting the resources in the building. The representation would
comprise two kinds of information about each point in the building
— its type and relationships with others. An example is a temper-
ature sensor is in room 501, which contains a first entity with the
type being temperature measurement, a second entity with the
type being room, and the relation between these two entities, i.e.,
A is in B. In the same spirit, Brick, a recently proposed schema

1a sensing or control point in the building is a sensor measurement, a controller, or a
software value such as a setpoint or a command.

1

https://doi.org/10.1145/3276774.3276794
https://doi.org/10.1145/3276774.3276794

BuildSys ’18, November 7–8, 2018, Shenzhen, China J. Koh et al.

by the research community, is designed to improve over existing
industrial building metadata schemata (e.g., Haystack [4], IFC [30],
and SAREF ontology [20]) with better expressibility, extensibility,
and usability [11, 12]. Brick particularly provides a full hierarchy
of entity classes as TagSets and a systematic way of describing
various relationships among entities. Brick enables portable build-
ing applications built upon common vocabularies of classes and
relationships to find required entities, instead of adapting to each
individual target building’s convention. To instantiate buildings
following a schema such as Brick, people commonly rely on pars-
ing the existing metadata in buildings, which can be acquired from
the building networks and management systems. Converting such
existing metadata into a known structure according to a schema is
called metadata normalization. However, the normalization process
currently requires tremendous manual effort, and for a typical five-
story office building with thousands of points and tens of thousands
of relationships among them, it can take weeks [21]. An expert with
necessary knowledge about the building naming convention and
the target standard needs to manually inspect each point out of
thousands to correctly map them. This process is clearly not scal-
able to the millions of buildings, and we need a more usable solution
for non-technical users such as building managers to close the loop.

Recognizing this challenge, prior works have proposed methods
to partially automate metadata normalization [14, 18, 24, 27, 28,
33, 34, 40, 43], with each focusing on different aspects of metadata.
Some methods recognize all entities using the raw metadata [18, 34,
43], including the site, floor and room identifiers, and point type.
Other methods identify only the point types based on either the
raw metadata [14, 28], timeseries data [24], or both [27]. Yet other
methods focus on inferring the relations between entities, including
the spatial relationships [26, 32] and functional relationships [33,
40]. In order to reduce the manual effort, these methods either only
exploit the structure available within each individual building [14,
18, 24, 28, 43] or transfer information from one building to the
next [27, 34]. Importantly, while all of these prior works exploit
common attributes of each point — the alphanumeric text-based
metadata and/or the numerical time series readings, they differ
significantlywith regard to the inference scope, input/output format
and structure, algorithm interface, evaluation metric, etc [48]. The
resultant lack of compatibility among the methods precludes the
possibility of combining and comparing them systematically. There
is still no standalone, versatile solution so far.

Genericmachine learning platforms such asMLJAR [6], OpenML [46],
and MLlib [38] have recently emerged. However, while these ML
platforms provide generic interfaces for standard machine learning
tasks, they are too generic to serve as a usable interface for the
unique building-specific human-in-the-loop process with diverse
data sources and different input/output formats. We need a modular
framework that provides unified interfaces for exploring existing
techniques as well as rapidly prototyping new algorithms, in order
to advance the state-of-the-art in building metadata normalization.
To this end, we design and implement Plaster, a modular framework
akin to Scikit-learn for building metadata normalization, which in-
corporates existing metadata normalization methods, along with
a set of data models, evaluation metrics, and canonical function-
alities commonly found in the literature. Altogether these enable
the integration of different methods into a generic workflow as

Plaster
Structured Metadata

RM­1.T

Avg. == 70

T ==
Temperature

RM­1 is a Room
RM­1.T is a Temp_Sensor
RM­1.T hasLocation RM­1

Raw Metadata

Timeseries Data

Experts' Input

Figure 1: To facilitate portable smart building applications,
Plaster collects the state-of-the-art metadata normalization
methods and provides a standardized way for users to map
unstructured metadata to the Brick format. Plaster also pro-
vides a standard benchmark for comparing different meth-
ods and spurs new ones.

well as development and evaluation of algorithms. With the de-
signed interfaces, Plaster can easily fit into existing building stacks,
from commercial building management systems to open-sourced
systems such as XBOS [8] and BuildingDepot [7], that expose the
access to metadata and timeseries data in buildings.

With Plaster, we also present the first systematic evaluation of
the state-of-the-art metadata normalization methods via a set of
unified metrics and datasets. Our evaluation covers a wide spec-
trum of aspects, such as how accurate each method is in inferring
the same kind of label, how many different kinds of labels each
method can produce, and how many human labels are required to
achieve certain performance. The experiment results reveal that
there is no one-size-fits-all solution and properly combining them
would produce better results. This evaluation would not have been
possible without Plaster, given the heterogeneity in earlier works.
We believe Plaster provides a comprehensive framework for further
development of new algorithms, techniques for metadata normal-
ization, as well as mapping buildings to a structured ontology like
Brick, enabling seamless smart buildings applications.

2 BACKGROUND AND RELATEDWORK
2.1 Building Metadata Schema: Brick
Without metadata represented in a unified, standardized building-
agnostic schema, deploying a smart building application requires
adapting it to each target building’s naming convention. Thus, the
existence and adoption of a standardized metadata schema directly
affect the cost of deploying smart building applications [31]. Indeed,
there already exist several metadata schemata such as Industry
Foundation Classes (IFC) [30] and Project Haystack [4]. However,
as they have incomplete vocabularies and cannot fully describe
the relationships required by common building applications [17],
Brick has been introduced as a complete, extensible, flexible, and
usable metadata schema for application portability [11, 12]. Brick
comprises a full hierarchy of classes (Fig. 2a) and covers a canonical
set of relationships between entities (Fig. 2b). The classes in Brick
are also referred to as TagSets as they consist of multiple Tags.
For example, Temperature and Sensor are Tags constituting a
TagSet, Temperature Sensor. With Brick, one can instantiate the
classes to represent actual entities (e.g., a sensor or a room) and
relate an entity to another via a particular relationship. The table
in Fig. 1 presents an example of a temperature sensor using Brick:

2

Plaster: An Integration, Benchmark, and Development
Framework for Metadata Normalization Methods BuildSys ’18, November 7–8, 2018, Shenzhen, China

Equipment Point Location

HVAC

AHU

Lighting
System

Sensor

Command

Temp
Sensor

Room

Lab

Floor

(a) Brick Class Hierarchy

Equipment

Point

Location

hasLocation

hasLocation,
feeds

isPointOf

isPartOf

isPartOf

Controls

(b) Brick Relationships

Figure 2: Brick comprises (a) a full hierarchy of classes and
covers (b) a canonical set of relationships between entities
required by common smart building applications.

the original raw metadata RM-1.T is mapped to an instance of
Temperature Sensor; and to represent relational information such
as its location, one can explicitly associate it with other entities
such as room-1, which is again an instance of type Room. With Brick,
a user can avoid using custom tags to describe both the entity type
and its relationships with others, which makes running portable
applications across buildings feasible. Therefore, we choose Brick
as the target mapping convention in this paper as it is capable
of representing the resources and relationships needed in smart
buildings, and is in our opinion more comprehensive than other
schemata.

2.2 Metadata Normalization Methodologies
We identify three dimensions of variance in existing metadata nor-
malization methods: 1) the type of data sources exploited, 2) the
kinds of labels produced, and 3) the degree of human input required.

There are three different types of data sources we can exploit
in buildings. The rawmetadata in BMSes, also referred to as point
names, usually encodes various kinds of information about the con-
trol and sensing points, including the type of sensor, floor and room
numbers, HVAC equipment ID, etc. The metadata within a building
often exhibits a strong learnable pattern, though it varies signif-
icantly across buildings and often does not generalize from one
building to another, and various works have leveraged such pattern
for metadata inference [14, 18, 28, 34, 43]. Secondly, modern BM-
Ses also collect time series readings of each point in the building,
which contain information that indirectly reveals what the point is
and its relationship with others. For example, the range of the read-
ings can indicate the type of sensor and the correlated changes in
different streams can indicate the relationship. Works that leverage
the characteristics of timeseries data include [24, 26, 32]. Addition-
ally, one may also perform controlled perturbation in a building,
e.g., to manually turn off an air handling unit, and create new pat-
terns in operations that help to reveal the functional relationships
between entities more clearly [33, 40]. However, it requires careful
and sophisticated designs with regard to the system configurations
and inhabitants’ schedules.

Existing metadata normalization methods focus on producing
two kinds of labels — following the definitions in Brick — entity
types and relationships between entities. The entity type refers to
the type of measurement of a point and there is a wide variety in its
possible set of labels, while the relationships include how points are
connected to each other, whether they are in the same room/zone,
etc. A few methods infer all the available information (e.g., both

Table 1: State-of-the-art metadata normalization methods
produce various types of labels using different data sources.
They also employ different machine learning (ML) algo-
rithms involving diverse types of user interaction.

Method Label Produced Data Source ML
Bhattacharya et al. [18]

Scrabble [34] All entities Raw metadata AL

Zodiac [14]
Hong et al. [28] Point type Raw metadata AL

Fürst et al. [22] Point type Raw metadata CS

BuildingAdapater [27] Point type Raw metadata,
Timeseries TL

Gao et al.[24] Point type Timeseries SL
Hong et al.[25] Point type Timeseries UL

Pritoni et al. [40]
Quiver [33]

Functional
Relationship

System
Perturbation,
Point Label

UL

AL: Active Learning TL: Transfer Learning
SL: Supervised Learning CS: Crowd Sourcing
UL: Unsupervised Learning

kinds of labels) encoded in the raw metadata [18, 34, 43], whereas
many others identify the point type only [22, 24, 27, 28], which
is the most important aspect of a point in buildings, or infer the
relationships only [26, 32, 33, 40].

While different methods all aim to reduce the amount of man-
ual effort in normalizing metadata, the degree of human input
required by each of them varies from fully supervised to semi-
supervised to completely unsupervised. Particularly, supervision,
or human input, in this context is the annotation or labels that a
human expert provides to interpret the point for its type, location,
relationship with others, etc. Supervised learning has been used
to learn the point types based on timeseries data or raw metadata,
where both clean, accurate labels from experts [24] and crowd-
sourced labels from occupants in the building [22] have been ex-
plored in the literature. For the set of semi-supervised solutions,
they employ active learning to iteratively select the most informa-
tive example and query an expert for its label to improve a model
for normalizing the metadata, requiring the minimal amount of
labels [14, 18, 28, 34]. On the other hand, transfer learning method
has been developed to exploit information from existing buildings
and completely eliminate human effort when inferring the meta-
data in a target building [27]. Similarly, Scrabble [34] is another
method that exploits existing buildings’ normalized metadata, but
through an active learning procedure. Table 1 summarizes these
various methods with regard to the above criteria. In this work
we show that, while each of these techniques has its advantages,
our proposed meta-framework – Plaster– can help to choose the
right algorithm per user requirement as well as leverage different
techniques in a complementary manner to yield better results.

Genericmachine learning platforms such asMLJAR [6], OpenML [46],
Microsoft AzureML Studio [5], andMLlib [38] have recently emerged.
These platforms have proved to be useful and facilitated tasks and
research on machine learning. However, a metadata normalization
problem has more unique requirements: 1) it handles diverse types
of input/output data, receiving as input timeseries data and/or en-
coded textual metadata, and produces a graph (such as Brick entity
graph) as a final output, 2) it involves various types of learning

3

BuildSys ’18, November 7–8, 2018, Shenzhen, China J. Koh et al.

framework including transfer learning, active learning, and su-
pervised learning altogether, and 3) users would need to interact
with the algorithm(s) through the abstraction of the building data,
rather than directly with the data itself. Consequently, existing
frameworks cannot be adopted for metadata normalization tasks.
Additionally, although not being directly related to the metadata
normalization problem, there are frameworks in other domains that
integrate different algorithms and create composable workflows,
including general machine learning analytics [10], recommenda-
tion systems [29, 49], non-intrusive load monitoring [15, 16]. To
the best of our knowledge, Plaster is the first framework of its kind
that enables the exploration and integration of various algorithms
on building metadata normalization, as well as provides the ability
to systematically compare related algorithms.

3 PLASTER FRAMEWORK
Plaster delivers a modular framework for benchmarking, integra-
tion, and development by providing two levels of abstractions com-
mon among existing methods. As the first level of abstraction, Plas-
ter views a metadata normalization task as an ensemble of a key
inferencer and several other reusable components that have canon-
ical functionalities and interfaces. This way, we provide users with
the flexibility in choosing the data model, learning scope, and in-
ference algorithm as needed. As the second level of abstraction, an
inferencer, which is the core component, comprises multiple com-
mon functions that we identify by summarizing existing metadata
normalization solutions. Because of the unified interfaces and its
modular design, Plaster facilitates the invention of new workflows
where a user can connect different inferencers to essentially create
a new algorithm without re-implementing prior algorithms.

3.1 Architecture
In Plaster, we abstract each method as an ensemble of components,
and overall there are four categories of components as illustrated in
Fig. 3a: preprocessing, feature engineering, inference models, and
results delivery functions.

The preprocessing component includes standard functions such
as denoising and outlier removal for timeseries data, and lowercas-
ing and punctuation removal for textual metadata, via an interface
to utilize existing libraries such as SciPy and Pandas. There are
also database (DB) I/O functions for both the metadata and time-
series data. We use universally unique identifiers to identify points
and one can access both the textual metadata and timeseries data
through the identifiers. For the timeseries DB functions, Plaster
builds upon an open-source library [3] piggybacked on MongoDB,
which is dedicated and optimized for timeseries data operations on
large data chunks. For feature engineering, there are a number of
existing libraries, such as the most widely used scikit-learn [39] and
a recent effort – tsfresh [19]. However, none exists as customized
for the timeseries data from buildings, considering their uniqueness
such as the distinct diurnal patterns. Hence, we incorporate and ex-
tend the feature sets2 implemented by Gao et al. [23], which contain
various feature functions customized for building timeseries data.
In addition to the original feature sets, we provide straightforward
programming interfaces for a user to select a subset of features out
2We refer the readers to their original paper [23] for more details on each feature set.

of these predefined features and a lightweight yet effective feature
selection function based on lasso [45]. We shall demonstrate the
effectiveness of the feature selector in Section 4.4. For text features,
we provide an interface for Bag-of-Words [42], sentence2vec [35],
and LSTM-based auto-encoder [44]. Delivery components consist
of the set of evaluation metrics (detailed in Section 4.1.2), user inter-
action mechanisms to provide additional supervision for inferencer
update as needed, and serialization tools that convert the inference
results into the Brick format (e.g, triples and graphs).

3.2 Inferencer
At the core of Plaster is a collection of state-of-the-art metadata in-
ference methods. We examine these algorithms and identify similar
procedures among them. We therefore abstract these procedures
as a series of common functions, encapsulate each as a parameter-
ized interface, and formulate a standardized way of constructing
an inference algorithm. We use an abstract class – inferencer– to
represent an algorithm (e.g., Scrabble, Building Adapter, etc), which
maintains its own model for metadata normalization under these
abstract interfaces. Such abstraction decouples the complex pro-
cedures in individual algorithm and allows new algorithms to be
easily included into the framework.

At a high level, an inference algorithm in the building metadata
domain aims to achieve the best possible accuracy with the largest
coverage using the minimal set of labeled examples. Therefore,
an inferencer typically contains a few steps: 1) the algorithm se-
lects as training set the most “informative” example(s) based on
its own criterion and acquires the labels for the selected exam-
ple(s) from a human expert; 2) the model updates its parameters
based on the latest training set after the new examples are added
in the previous step, and then 3) the model predicts all types of
labels (e.g., point type, location, relationships, etc.) covered by the
algorithm. Plaster abstracts each of the above steps as a function,
viz, select_examples(), train(), and predict(), respectively,
as shown in Fig. 3c; and we design an inferencer to be a composi-
tion of these functions. We shall note that, although these functions
appear to be only able to compose an active learning-based pro-
cedure, we design the select_examples() function to be generic
enough such that any fully to semi-supervised learning algorithm
can fit into this template. When obtaining examples for a supervised
or transfer learning algorithm, the select_examples() function
simply includes all the labeled or transferred examples for training
at one time, rather than being iteratively done as in active learning.
For active learning, these steps are repeated in iterations involving a
human expert to best learn the model, while for a supervised learn-
ing or transfer learning algorithm, these steps are mostly executed
just once with already labeled examples.

We also define standardized input/output interfaces for these
common functions to enable the communication between different
inferencers, which permits the creation of workflow as we shall
discuss shortly. For inputs, an inferencer accepts three types of
sources: rawmetadata, timeseries data, and the corresponding labels
of examples. We provide a wrapper to digest two types of raw
metadata commonly found in existing systems: 1) point names
accessible through vendor-given interfaces that are widely used
in the literature, and 2) metadata in BACnet [9] including entries

4

Plaster: An Integration, Benchmark, and Development
Framework for Metadata Normalization Methods BuildSys ’18, November 7–8, 2018, Shenzhen, China

Timeseries
Preprocessing

Timeseries
Feature Extractor

Preprocessing
Feature

Engineering
Inference Model Delivery

Text
Normalization

Text
Feature Extractor

Visualization

Evaluation

Serialization

Program
Synthesis

Building
Adapter

Scrabble

Zodiac

Active
Learning

Transfer
Learning

Timeseries
Classification

Supervised
Learning

Hong et al.

(a) Components in Plaster

User Interface

Inferencer1 Inferencer2

Inferencer3 Inferencer4

Workflow

raw metadata, timeseries, labels,
timeseries features

Database

(b) Workflow

­ select_example()
­ train()
­ predict()

­ Raw Metadata
­ Timeseries Data
­ Inferred Labels in Brick

­ Inferred Labels

Inferencer

(c) inferencer In-
terface

Figure 3: Plaster Architecture: Plaster adopts a modular design and incorporates a variety of components, among which the
core is a family of inference algorithms. Each algorithm is abstracted as an ensemble of common functions, which allows the
communication between different algorithms. Such a design enables not only the flexible invention of a workflow composed
of any algorithms, but also the systematical comparison between different algorithms.

such as BACnet Description and BACnet Unit. Timeseries data
is stored as a series of timestamped values and the data for each
specific point is associated with a unique identifier of the point
for indexing and future retrieving. As each inferencer can learn
and produce various types of labels as discussed in Section 2.2, an
inferencer can take three kinds of labels at different granularities:
point type labels, labels for all entities existing in the metadata, and
character-level parsing with BIO tagging [41].

The ultimate goal of each individual inferencer is to generate
structured metadata. Since Brick is capable of representing different
kinds of metadata such as the types of entities and the relationships
between them, we express the predict()method’s outputs of each
inferencer following the Brick’s format. Particularly, the outputs
are a list of triples for entities and relationships in a building as
explained in Section 2.1. Consequently, an inferencer is capable of
representing different inference results in the same format. For ex-
ample, Zodiac [14] infers the point types, which can be represented
as “X is a Y” triples, while Quiver [33] infers the co-location rela-
tionship for multiple sensors expressed as “X1 hasLocation Y” and
“X2 hasLocation Y”. Such different types of inference are serialized
in the same format of Turtle [1] using the vocabulary in Brick.

Additionally, for each inferencer we include the confidence of its
inference results produced by the original algorithm in its output
so that an inferencer is able to more flexibly sift through and use
another inferencer’s results. Specifically, we store the confidence
for each produced triple within the inferencer. However, the notion
of confidence is unique per inference algorithmwith different mean-
ings. For example, Support Vector Machine’s confidence is usually
measured by the distance to the hyperplane, while in Naïve Bayes,
it is the probability of observing the example given the model’s
parameters. Thus, we restrict the interpretation of confidence score
within each individual inferencer despite the values of those metrics
being uniformly normalized to be between zero and one. We shall
show how this is useful in real workflows in Section 4.3.

As a natural outcome, Plaster provides a standard benchmark
for different metadata normalization algorithms. With the unified
interfaces in inferencer, to do so is straightforward as one only
needs to specify the set of algorithms he/she wants to compare as
well as the type(s) of data to ingest and designate a building for

the comparison. We will demonstrate with concrete examples in
Section 4.2.

3.3 Workflow
The standardized interfaces in inferencer also enable the creation
of a workflow for metadata normalization. A workflow is a hybrid
method comprised of multiple algorithms, each being an inferencer
in Plaster, where the output of an inferencer is passed to another
while each inferencer executes its inference procedure indepen-
dently. While a single inferencer usually only infers one aspect
of the metadata, a workflow would potentially be able to infer
multiple or all the aspects of the metadata by employing different
inferencers. Each inferencer may have a different learning objective
as described in Section 2.2, and Plaster helps to systematically lever-
age the advantages of each. For example, Building Adapter [27]
(BA) is a transfer learning based algorithm that infers point types
without any human inputs, but usually with a potential low recall.
Instead of starting from scratch, the output of BA can constitute an
initial training set for Zodiac [14] to jump start its learning proce-
dure and potentially reduce the amount of manual labels required.
Various use cases of workflow enabled by Plaster are elaborated
and evaluated in Section 4.3.

When executing, the workflow function call will invoke the
corresponding functions (i.e., select_examples(), train(), and
predict()) in each of its inferencers in the order specified in the
workflow, with an additional connecting step that obtains and ap-
plies the previous inferencer’s prediction results to the next. The
process of applying a precedent inferencer’s results vary across
different inferencers so that a human integrator should specify how
to digest such predictions inside the inferencer’s methods. If some
of the inferred relationships by the previous inferencer are less con-
fident, the next inferencer should filter the results or simply avoid
using them. On the contrary, if the previous inferencer’s inference is
more confident than the current inferencer’s, it can discard its own
inference and adopt the previous one. In the example of connecting
BA and Zodiac, Zodiac would need to be able to select only the
prediction results with high confidence from BA and subsequently

5

BuildSys ’18, November 7–8, 2018, Shenzhen, China J. Koh et al.

add them into its own training set inside select_examples(). Al-
though it is an additional implementation over the base algorithms,
we shall see such synergy could lead to better results.

4 EVALUATION
In this section, we demonstrate how Plaster enables systematic
comparisons of different metadata normalization algorithms, the
creation of new workflows by connecting multiple algorithms, and
the programming interfaces for algorithm development such as
feature selection.

4.1 Experimental Setup
4.1.1 Datasets. We obtain a subset of the study buildings used in
Brick [11], which consists of five buildings from four different cam-
puses, including the raw metadata and timeseries data for about a
month. Table 2 summarizes the details of each test building. While
this collection of five buildings are not comprehensive for building
metadata research, we argue that they are representative enough
with regard to the diversity in vendors, sizes, years of construc-
tion, etc. For building D1, the original author did not release the
timeseries data, and therefore, we shall note that D1 will not be
included later in evaluations that involve timeseries data.

4.1.2 Evaluation Metrics. Overall, we consider three aspects when
evaluating each algorithm:

• Inference Accuracy: How accurate are the predictions of an algo-
rithm in terms of its original learning purpose?

• Inference Coverage: What kinds of labels can an algorithm infer?
• Human Efforts: How many examples does an expert need to
provide in the learning process of an algorithm?

In this study, each algorithm infers one or multiple kinds of labels
for a point. For example, Zodiac infers only one kind of labels, which
is the point type, whereas Scrabble also identifies other kinds of
labels such as location aside from the point type. For each kind
of label, every possible Brick tagset is treated as a class (e.g., for
point type we have room temperature, supply air temperature,
etc), and we evaluate the inference performance considering all
kind(s) of labels each algorithm produces. To measure how accurate
the inference results are for an algorithm, we calculate the Micro-
averaged F1 (MicroF1), Macro-averaged F1 (MacroF1), and example-
level accuracy. MicroF1 globally counts the total true positives,
false negatives and false positives regardless of the class, while
MacroF1 calculates the same quantities for each class and then finds
their unweighted mean. MacroF1 indicates how many different
classes can be correctly inferred, which is an important metric for
a building dataset that typically has an (extremely) imbalanced
class distribution, with the points related to heating and cooling
in domination. For example, while Zone Temperature Sensors
might frequently exist in HVAC systems, specialized points such
as Gas Meters are generally rare. For example-level accuracy, it is
defined as the ratio of the number of correctly labeled examples
over the total number of examples. Specifically, an examples is
considered to be correctly labeled if and only all of its labels are
correctly predicted. We use this metric along with the F1 scores
when an algorithm produces more than one kind of labels.

We measure human efforts by the number of examples labeled
by an expert during the model learning process. For point type
inference, an example is usually a mere point type label given the
raw metadata of the point. For the examples used for inferring all
possible entities, they contain more information aside from the
point type label, such as equipment ID and location. Although
the amount of information in the examples are different, we con-
sider the effort for labeling an example to be the same because the
required knowledge per example is similar.

4.1.3 Inferencers Included in Plaster. We have refactored and incor-
porated the following algorithms into Plaster: Hong active learn-
ing [28] (referred to as AL_Hong hereafter), Bhattacharya et al. [18]
(referred to as ProgSyn), Zodiac [14], Building Adapter [27], and
Scrabble [34]. We exclude algorithms from the evaluation that re-
quire the actual control of actuations in buildings [33, 40] because
such experiments are not practical in most buildings. However, they
fit into Plaster well as part of a workflow in the real world such as
building commissioning. Plaster is open-sourced and implemented
in Python. The API documentation, running examples, together
with the data sets can be found at
https://github.com/plastering/plastering.

4.2 Benchmarking
Enabled by the unified interfaces in inferencer, Plaster allows a user
to easily select a method and specify the type of input ingested,
the test building to use, and the evaluation metric; this facilitates
systematical comparisons of different algorithms, i.e., benchmarking.
We present the results of three representative scenarios.

4.2.1 Active Learning for Point Type Inference. In this scenario, we
evaluate a set of active learning-based algorithms for their learning
efficiency in inferring point types, the most important aspect of
buildingmetadata.We include two algorithms that exclusively work
for this purpose – AL_Hong [28] and Zodiac [14], together with
another two algorithms that can infer multiple aspects in metadata
(type, location, equipment, etc) – ProgSyn [18] and Scrabble [34].
Although the latter two are designed to learn all aspects of metadata,
we make each to infer only the point type in this set of experiments.
We run each algorithm on four different buildings, starting with
zero training examples, and calculate the MicroF1 and MacroF1 of
inferred type labels. The results are shown in Fig. 4a.

We see that AL_Hong marks a stark contrast to all the other
algorithms for its steep learning rate (by MicroF1) in the early
stage for the first 75 examples. This is because of its clustering-
based example selection strategy, which excels in quickly selecting
representative examples that are also informative formodel training.
However, we also see that Zodiac and Scrabble are able to catch up
after 75 to 125 examples, surpassing in MacroF1, and even achieve
100% in F1 for some case (on building A-1) after converging. These
results suggest that Zodiac and Scrabble are better in learning
the minor point types that appear less frequently in a building,
which AL_Hong is not able to learn even with more examples. We
would also like to point out that, due to the deterministic nature
of the algorithm, ProgSyn and Zodiac may terminate early (e.g,
on C-1). Zodiac runs with a preset confidence threshold, and as it
gradually acquires training examples, whenever the algorithm has

6

https://github.com/plastering/plastering

Plaster: An Integration, Benchmark, and Development
Framework for Metadata Normalization Methods BuildSys ’18, November 7–8, 2018, Shenzhen, China

Building Location Vendor Year Size (ft2) # Points
Point
Types

Unique
Words

Engineering Building Unit 3B UC San Diego, San Diego, CA JCI 2004 150,000 4,594 108 426
Applied Physics and Mathematics UC San Diego, San Diego, CA JCI 2004 150,000 4,357 111 369
Rice Hall Univ. of Virginia, Charlottesville, VA Trane 2011 100,000 1,300 60 290
Sutardja Dai Hall UC Berkeley, Berkeley, CA JCI 2009 141,000 2,300 31 116
Gates Hillman Center Carnegie Mellon Univ., Pittsburgh, PA ALC 2009 217,000 8,292 147 179

Table 2: Case Study Buildings Information: These are office buildings in universities. JCI and ALC stand for Johnson Controls
and Automated Logic, respectively. The number of unique words represents the complexity of the metadata.

10 50 10
0

15
0

20
0

25
0

0

20

40

60

80

100

M
et

ric
 (%

)

A-1

10 50 10
0

15
0

20
0

25
0

of Examples

B-1

10 50 10
0

15
0

20
0

25
0

C-1 micro-F1, Zodiac
Macro-F1, Zodiac
micro-F1, AL_Hong
Macro-F1, AL_Hong
micro-F1, Scrabble
Macro-F1, Scrabble
Accuracy, Scrabble
micro-F1, ProgSyn
Macro-F1, ProgSyn
Accuracy, ProgSyn10 50 10

0
15

0
20

0
25

0

D-1

(a) Learning rate for inferring point type by different algorithms on 4 buildings starting from scratch (i.e., zero training set).

10 50 10
0

15
0

20
0

25
0

0

20

40

60

80

100

M
et

ric
 (%

)

A-2 ⇒ A-1

10 50 10
0

15
0

20
0

25
0

of Examples

C-1 ⇒ A-1

10 50 10
0

15
0

20
0

25
0

A-1 ⇒ C-1

(b) Learning rate for inferring point type, exploiting an existing building’s
normalized metadata. X -> Y indicates applying X’s normalized metadata
to initialize the learning for Y.

10 50 10
0

15
0

20
0

25
0

of Examples

40

60

80

100
M

et
ric

 (%
)

A-1

10 50 10
0

15
0

20
0

25
0

C-1

(c) Learning rate for inferring all entities in the raw
metadata from scratch.

Figure 4: Comparisons of Different Algorithms on Various Buildings: (atop each figure) The alphabet represents a campus and
the number represents a building on that campus (e.g., A-1). We leave out Scrabble’s results for B-1 and ProgSyn’s results for
A-1, B-1 and D-1 due to the limited types of labels in these buildings. All experiments are averaged over four runs and the
legend is shared across all figures.

high enough confidence in every testing instance, it will cease. For
ProgSyn, it decides whether the learned rules are able to parse every
example and stops when it becomes the case. Furthermore, there is
no clear winner in this set of experiments. The implication, however,
is that if one wants to quickly label the types with reasonably high
accuracy (e.g., 85%), AL_Hong is an appropriate choice. When one
desires better coverage of less frequent types in a long run, Zodiac
or Scrabble would be a better choice.

4.2.2 Jump-started Active Learning. All the original active learning
based algorithms [14, 28, 34] are designed to work only within the
same building, meaning that they do not consider or leverage any
information from other existing buildings. However, because the
inferencer design in Plaster makes it convenient to start from any
training set, we will next show what the learning results would be if

we run an active learning-based algorithm using information from
another building for inferencer initialization. More specifically, we
use another building’s point names along with their labels (e.g.,
from A-1) to formulate the initial training set for an inferencer and
then run the algorithm on another building (e.g., C-1) as we did in
Section 4.2.1. The results are shown in Fig. 4b.

When added a building from a different vendor with almost com-
pletely distinct naming conventions (e.g., A-1 -> C-1 and C-1 ->
A-1), the type inference performance either remains unchanged
or even deteriorates in the early stage. This is expected as such
transfer would introduce more irrelevant patterns to the same point
type for the algorithm to learn, which is almost equivalent to inject-
ing noise. Nonetheless, we still notice an increase in MicroF1 for
Scrabble in the early stage in the case of A-1 -> C-1. This is largely
due to Scrabble’s underlying intermediate representation, which is

7

BuildSys ’18, November 7–8, 2018, Shenzhen, China J. Koh et al.

10 50 10
0

15
0

20
0

25
0

of Examples

0

20

40

60

80

100

M
et

ric
 (%

)

A-1

MicroF1, Zodiac
MacroF1, Zodiac
MicroF1, BA/Zodiac
MacroF1, BA/Zodiac

(a) BA -> Zodiac

10 50 10
0

15
0

20
0

25
0

of Examples

0
5

10
15
20
25
30
35

C
ou

nt
A-1

of corrected examples

(b) Zodiac -> Scrabble

10 50 10
0

15
0

20
0

25
0

of Examples

0

20

40

60

80

100

M
et

ric
 (%

)

A-1

MicroF1, Zodiac
MacroF1, Zodiac
MicroF1, Quiver/Zodiac
MacroF1, Quiver/Zodiac

(c) Quiver -> Zodiac

Figure 5: Learning efficiency for inferring point type by
different workflows. They all demonstrate synergistic im-
provement in performance.

able to learn more general patterns with different buildings. On the
other hand, when we add a building from the same vendor with a
similar vocabulary for point types (see A-2 -> A-1), we observe a
better starting point (71% in the first figure in 4b vs 58% in the first
figure in 4a) and also a better converged MicroF1 for AL_Hong. We
observe similar improvements for Scrabble and Zodiac in this case.
We thus conclude that having building(s) with similar naming con-
vention is useful for inferring subsequent buildings by transferring
the information in the raw metadata.

4.2.3 Active Learning for Multiple Entities. While detecting the
point type is important, other types of entities encoded in the
metadata, such as the associated room and equipment, are also
essential for building applications. We therefore evaluate Scrabble
and ProgSyn for their ability to identify multiple types of entities
from the given raw metadata, including the point type, room loca-
tion, and associated equipment ID. As shown in Fig. 4c, Scrabble
outperforms ProgSyn in both MacroF1 and example-level accuracy.
The gain in performance of Scrabble is attributed to its more so-
phisticated representation learning procedure where it first maps
the input to an intermediate representation and then to actual la-
bels, while ProgSyn maps the raw metadata directly to final labels.
For example, for a string ZNT, Scrabble first learns its nuanced
character-level BIO tags and then maps to the Brick tagset (i.e.e,
Zone Temperature Sensor), while ProgSyn directly learns its
mapping rule to the tagset via regular expressions.

4.3 Workflow
Having seen the results on comparing different algorithms indi-
vidually, we next show how they can interact with each other in
Plaster. A key feature of Plaster is the ability to try out different
workflows, which integrate different algorithms in different orders.
We present and evaluate three exemplary workflows where two
inferencers are connected together for better performance than if
they are used individually.

4.3.1 Transfer Learning Benefits Active Learning. A completely au-
tomated method such as Building Adapter (BA) [27] is able to
achieve relatively high inference precision for point types in a
target building, though for only a fraction of the points. It would be

natural to connect and feed the labeled examples by BA to an active
learning-based method, such as Zodiac [14], as a better starting
point. This appears to be similar to the jump-started active learning
scenario in Section 4.2.2, in that both provide a better starting point
for active learning. However, a fundamental difference is that a
method such as BA, which transfers the learnt model via timeseries
data from a different building to facilitate another learning process
based on textual data, which is independent from these two build-
ings’ naming conventions, while in the previous scenario we will
only see benefits when transferring from a building with a similar
naming convention. We implement such a workflow of combining
BA and Zodiac to again infer point types, with Fig. 5a showing
the comparison results. We see that the combination achieves both
higher MicroF1 and MacroF1 up to 70 examples, benefiting from
the transferred information. However, the incorrect labels from
BA’s predictions (though only a handful) remain as negative train-
ing examples to Zodiac and it cannot recover from such noise in
such a naïve integration. These inherited incorrect labels would be
corrected or filtered out at the beginning if Zodiac could have the
ability to quantify BA’s results based on its own criterion. Yet, this
will require additional modifications to the original algorithm and
is hence out of the scope of Plaster.

4.3.2 Specialty Complements Versatility. Some algorithms have
high precisions while others have high recalls in their inference
results. For example, Zodiac infers only point types but with high
precision, while Scrabble can identify multiple kinds of entities with
a high recall. Thus we can filter Scrabble’s results by using Zodiac’s
results without compromising the results of either. More specifically,
we feed Zodiac’s results to Scrabble’s prediction and if there is a
disparity between the two on an instance, Scrabble will adopts
Zodiac’s prediction for point type. As shown in Fig. 5b, we see
there are about 1,500 corrections made to the point type predictions
in total (note that we only count the number of corrections made
by this strategy, and an instance could be corrected multiple times)
with little additional computational cost.

4.3.3 Mutual Benefits between Different Types of Inference. Learn-
ing functional relationships often relies on perturbations to the
control systems (e.g., Quiver [33]) and, to correctly perform pertur-
bations on a target point such as a VAV on/off command, it requires
knowing the point types apriori. Thus, it is natural to apply an ac-
tive learning algorithm (Zodiac) to infer point types as a prior step
to a perturbation-based relationship inference algorithm (Quiver).
Furthermore, the inferred relationships can in return help examine
whether the point types have been correctly inferred. For example,
the fact that a VAV typically contains only one for each type of
its sensing and control points can help identify mistakes made in
type inference. Concretely, based on the manual perturbation to a
VAV on/off command, Quiver [33] identifies a group of co-located
points and finds that there are two supply air temperature sensors;
it is highly likely that Zodiac has made a mistake in the type in-
ference. For this experiment, we emulate the above procedure by
first running Zodiac to infer point types, and for each predicted
VAV on/off command, we use the ground-truth for the co-located
points in that VAV (since we are not able to actually run Quiver)
and examine if there is any duplicated type among these points,

8

Plaster: An Integration, Benchmark, and Development
Framework for Metadata Normalization Methods BuildSys ’18, November 7–8, 2018, Shenzhen, China

Li

Calb
imonte Gao

Hong

Bhatta
chary

a
Bala

ji
Koh All

Sele
cte

d
0

20

40

60

80

po
in

t t
yp

e
ac

cu
ra

cy
 (%

)

B-1 A-2 C-1 A-1

Figure 6: Results for timeseries data based type inference:
We show 7 different feature sets (each is shown as a group of
bars and each bar represents the result on a building), along
with a fusion of them (All) and a better subset selected by
Plaster (Selected).

in order to correct any type mis-predictions. We see modest im-
provement in the type inference results because we only consider
∼15 most common point types existing in VAVs, as Quiver can only
find the co-located points for VAVs. Although a workflow as such
exploits certain domain knowledge, it would be generally useful to
practitioners with special demands in building applications.

4.4 Timeseries Feature Selection
We also empirically inspect how well each timeseries feature set
performs and how effective the feature selection is in Plaster. To
this end, we create a workflow that feeds the timeseries data to
each of the feature extraction modules included in Plaster, passes
the features to a random forest classifier (which is identified as
the best performing classifier [23]), and predicts the point type for
evaluation. Fig. 6 summarizes our results.

We observe that each individual feature set roughly performs on
a par except the second set. A simple fusion of all the dimensions
from each feature set (marked as All in the figure), which equates
to a 106-dimensional feature set, does not yield much better perfor-
mance. However, the selected set of features does give a 3% increase
overall than the best set with the number of features reduced to
60. This demonstrates the usefulness of the feature selection and
integration provided by Plaster.

We clearly notice the performance here by using timeseries data
features is far less competitive than using textual metadata (as
demonstrated in Fig. 4). However, the implication is that, as data
features better suit transfer learning based tasks [27], the better
feature set we have identified here would help to improve such
a procedure, for instance Building Adapter. Moreover, we would
also like to emphasize that subsequent users and/or researchers
can easily register their own feature set in the feature extractor
interface in Plaster, and also perform feature selection with our
provided method to obtain a even better set of features for their
target metadata normalization problem.

4.5 Programming APIs and Examples
We next showcase a simple code snippet on how to evaluate an
inferencer in Plaster following the unified interface design. We

1 target_building, source_buildings = 'ap_m', ['ebu3b']
2 SAMPLE_SIZE = 100
3 srcids = LabeledMetadata\
4 .objects(building=target_building).distinct('srcid')
5 training_srcids = random.sample(srcids, SAMPLE_SIZE)
6 test_srcids = [srcid for srcid in srcids
7 if srcid not in training_srcids]
8 scrabble = ScrabbleInterface(target_building, srcids,

source_buildings)
9 scrabble.update_model(training_srcids)
10 metrics = scrabble.evaluate(test_srcids)

Listing 1: Example for Evaluating an Inferencer

see from the example that one only needs to specify an algorithm
along with some configurations including the buildings involved
for evaluation and parameters to the algorithm. We shall note that
for more running examples on benchmarking, workflow, etc, one
can refer to our documentation3 for details.

5 DISCUSSION AND FUTUREWORK
First, although not being the focus of Plaster, we see that for the
same metadata normalization algorithm, still its performance varies
significantly from building to building. When designing an algo-
rithm in the future, one would want to test on a diverse set of
buildings to avoid over-fitting for a single building. Secondly, hav-
ing seen the synergy between different algorithms via our workflow
design, the original authors and/or subsequent researchers might
consider revisiting and refining the design of existing metadata nor-
malization algorithms, in order to better leverage the advantages
from each other. Thirdly, given the recent advances in deep neural
networks concerning both textual and timeseries data, it remains
open how to best harvest their progress to complement or reshape
the research on metadata normalization. Plaster now provides some
basic functions for feature selection taking advantage of existing
neural network algorithms. Furthermore, the architecture of Plaster
is flexible enough to directly develop neural network based algo-
rithms. Additionally, as Plaster currently is only compatible with
inputs in the Brick format, in future we would want to extend it
to exploit existing resources available in other schemata such as
Haystack, in order to augment the existing methods in Plaster via
a workflow. Furthermore, we would like to provide the ability of
automatically selecting an inferencer, or composing a workflow, for
a user based on their demands and what are available to them, i.e.,
the idea of meta-learning [47]. For example, if they want to convert
a building with a few others available already, we could connect
Building Adapter and Scrabble as a workflow for them.

6 CONCLUSION
Connecting sensor data to the context in which it was generated
and mapping this information to a normalized format is challenging.
The recent invention of a unified schema – Brick – and various
metadata normalization methods alleviates the challenge. Yet, the
lack of compatibility between methods precludes the possibility of
combining and comparing them due to the heterogeneity in the
inference scope, input/output format and structure, algorithm in-
terface, and evaluation metric. In this paper, we present Plaster,
3 https://github.com/plastering/plastering/blob/master/examples

9

https://github.com/plastering/plastering/blob/master/examples

BuildSys ’18, November 7–8, 2018, Shenzhen, China J. Koh et al.

a modular framework with unified interfaces, which enables the
creation of workflows as well as development and evaluation of new
algorithms. Via systematic evaluations with a set of unified met-
rics and building datasets, we have demonstrated that for the first
time, Plaster provides a standard benchmark for different metadata
normalization methods, and the workflows can integrate existing
methods. Our results reveal that 1) each method has their own pros
and cons and should be chosen according to a user’s requirement,
and 2) different methods can be combined in a complementary
manner to yield better results. We believe Plaster provides a use-
ful framework for further advances in metadata normalization for
buildings, as well as for mapping metadata to a schema like Brick,
enabling seamless smart buildings applications in the future.

ACKNOWLEDGMENTS
We thank our shepherd, Clayton Miller, and the anonymous review-
ers for helpful comments. This work was supported by National
Science Foundation [CNS-1526841, CSR-1526237, TWC-1564009, IIS-
1636879, IIS-1718216] and Department of Energy [DE-EE0008227].

REFERENCES
[1] [n. d.]. Turtle. https://www.w3.org/TR/turtle/.
[2] 2012. Commercial Buildings Energy Consumption Survey 2012—Microdata.

https://www.eia.gov/consumption/commercial/data/2012/.
[3] 2014. Arctic. https://github.com/manahl/arctic. last visited: 05-20-2018.
[4] 2014. Project Haystack. http://project-haystack.org/.
[5] 2016. Microsoft Azure Machine Learning Studio. https://studio.azureml.net/.
[6] 2016. MLJAR. https://mljar.com/.
[7] 2017. BuildingDepot 3.0. http://buildingdepot.org/.
[8] Michael P Andersen, John Kolb, Kaifei Chen, David E Culler, and Randy Katz.

2017. Democratizing authority in the built environment. In BuildSys. ACM, 23.
[9] ASHRAE 135-2016 BACnet 2016. BACnet-A Data Communication Protocol for

Building Automation and Control Networks. Standard. ASHRAE, GA, USA.
[10] Peter Bailis, Kunle Olukotun, Christopher Ré, and Matei Zaharia. 2017. In-

frastructure for Usable Machine Learning: The Stanford DAWN Project. CoRR
abs/1705.07538 (2017). arXiv:1705.07538 http://arxiv.org/abs/1705.07538

[11] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,
Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, et al.
2016. Brick: Towards a unified metadata schema for buildings. In BuildSys.

[12] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,
Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, et al.
2018. Brick: Metadata schema for portable smart building applications. Applied
Energy (2018).

[13] Bharathan Balaji, Jason Koh, Nadir Weibel, and Yuvraj Agarwal. 2016. Genie:
a longitudinal study comparing physical and software thermostats in office
buildings. In UbiComp. ACM, 1200–1211.

[14] Bharathan Balaji, Chetan Verma, Balakrishnan Narayanaswamy, and Yuvraj
Agarwal. 2015. Zodiac: Organizing large deployment of sensors to create reusable
applications for buildings. In BuildSys. ACM, 13–22.

[15] Nipun Batra, Jack Kelly, Oliver Parson, Haimonti Dutta, William Knottenbelt,
Alex Rogers, Amarjeet Singh, andMani Srivastava. 2014. NILMTK: an open source
toolkit for non-intrusive load monitoring. In Proceedings of the 5th international
conference on Future energy systems. ACM, 265–276.

[16] Christian Beckel, Wilhelm Kleiminger, Romano Cicchetti, Thorsten Staake, and
Silvia Santini. 2014. The ECO data set and the performance of non-intrusive load
monitoring algorithms. In Proceedings of the 1st ACM Conference on Embedded
Systems for Energy-Efficient Buildings. ACM, 80–89.

[17] Arka Bhattacharya, Joern Ploennigs, and David Culler. 2015. Short paper: An-
alyzing metadata schemas for buildings: The good, the bad, and the ugly. In
Proceedings of the 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments. ACM, 33–34.

[18] Arka A Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, Kamin Whitehouse,
and Eugene Wu. 2015. Automated metadata construction to support portable
building applications. In BuildSys. ACM, 3–12.

[19] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. 2018.
Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh âĂŞ
A Python package). Neurocomputing (2018).

[20] Laura Daniele, Frank den Hartog, and Jasper Roes. 2015. Created in close inter-
action with the industry: the smart appliances reference (SAREF) ontology. In
International Workshop Formal Ontologies Meet Industries. Springer, 100–112.

[21] Bing Dong and Khee Poh Lam. 2014. A real-time model predictive control for
building heating and cooling systems based on the occupancy behavior pattern
detection and local weather forecasting. In Building Simulation, Vol. 7. Springer.

[22] Jonathan Fürst, Kaifei Chen, Randy H Katz, and Philippe Bonnet. 2016. Crowd-
sourced BMS point matching and metadata maintenance with Babel. In Pervasive
Computing and Communication Workshops (PerCom Workshops). IEEE, 1–6.

[23] Jingkun Gao and Mario BergÃľs. 2018. A large-scale evaluation of automated
metadata inference approaches on sensors from air handling units. Advanced
Engineering Informatics 37 (2018).

[24] Jingkun Gao, Joern Ploennigs, and Mario Berges. 2015. A data-driven meta-data
inference framework for building automation systems. In BuildSys. ACM, 23–32.

[25] Dezhi Hong, Quanquan Gu, and Kamin Whitehouse. 2017. High-dimensional
time series clustering via cross-predictability. In AISTATS. 642–651.

[26] Dezhi Hong, Jorge Ortiz, Kamin Whitehouse, and David Culler. 2013. Towards
automatic spatial verification of sensor placement in buildings. In BuildSys.

[27] Dezhi Hong, Hongning Wang, Jorge Ortiz, and Kamin Whitehouse. 2015. The
building adapter: Towards quickly applying building analytics at scale. In BuildSys.
ACM, 123–132.

[28] Dezhi Hong, Hongning Wang, and Kamin Whitehouse. 2015. Clustering-based
active learning on sensor type classification in buildings. In CIKM.

[29] Nicolas Hug. 2017. Surprise, a Python library for recommender systems. http:
//surpriselib.com.

[30] ISO 16739 2014. Industry Foundation Classes (IFC) for data sharing in the construc-
tion and facility management industries. Standard. buildingSMART.

[31] Srinivas Katipamula, Ronald M Underhill, James K Goddard, Danny J Taasevigen,
MA Piette, J Granderson, Rich E Brown, Steven M Lanzisera, and T Kuruganti.
2012. Small-and medium-sized commercial building monitoring and controls needs:
A scoping study. Technical Report. Pacific Northwest National Lab.(PNNL),
Richland, WA (United States).

[32] Merthan Koc, Burcu Akinci, and Mario Bergés. 2014. Comparison of linear
correlation and a statistical dependency measure for inferring spatial relation of
temperature sensors in buildings. In BuildSys. ACM, 152–155.

[33] Jason Koh, Bharathan Balaji, Vahideh Akhlaghi, Yuvraj Agarwal, and Rajesh
Gupta. 2016. Quiver: Using Control Perturbations to Increase the Observability
of Sensor Data in Smart Buildings. arXiv preprint arXiv:1601.07260 (2016).

[34] Jason Koh, Bharathan Balaji, Dhiman Sengupta, Julian McAuley, Rajesh Gupta,
and Yuvraj Agarwal. 2018. Scrabble: Transferrable Semi-Automated Semantic
Metadata Normalization using Intermediate Representation. In BuildSys. ACM.

[35] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International Conference on Machine Learning. 1188–1196.

[36] Xuesong Liu, Burcu Akinci, Mario Berges, and James H Garrett Jr. 2012. An inte-
grated performance analysis framework for HVAC systems using heterogeneous
data models and building automation systems. In BuildSys. ACM, 145–152.

[37] Yudong Ma, Francesco Borrelli, Brandon Hencey, Brian Coffey, Sorin Bengea,
and Philip Haves. 2012. Model predictive control for the operation of building
cooling systems. IEEE Transactions on control systems technology 20, 3 (2012).

[38] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. 2016.
Mllib: Machine learning in apache spark. JMLR 17, 1 (2016), 1235–1241.

[39] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[40] Marco Pritoni, Arka A Bhattacharya, David Culler, and Mark Modera. 2015. A
method for discovering functional relationships between air handling units and
variable-air-volume boxes from sensor data. In BuildSys. ACM, 133–136.

[41] Lev Ratinov and Dan Roth. 2009. Design challenges and misconceptions in named
entity recognition. In Proceedings of the Thirteenth Conference on Computational
Natural Language Learning. Association for Computational Linguistics, 147–155.

[42] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[43] Anika Schumann, Joern Ploennigs, and Bernard Gorman. 2014. Towards automat-
ing the deployment of energy saving approaches in buildings. In BuildSys.

[44] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In NIPS. 3104–3112.

[45] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological) (1996), 267–288.

[46] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML:
Networked Science in Machine Learning. SIGKDD Explorations 15, 2 (2013).

[47] Ricardo Vilalta and Youssef Drissi. 2002. A perspective view and survey of
meta-learning. Artificial Intelligence Review 18, 2 (2002), 77–95.

[48] Weimin Wang, Michael R Brambley, Woohyun Kim, Sriram Somasundaram, and
Andrew J Stevens. 2018. Automated point mapping for building control systems:
Recent advances and future research needs. Automation in Construction 85 (2018).

[49] Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and
Deborah Estrin. 2018. OpenRec: A Modular Framework for Extensible and
Adaptable Recommendation Algorithms. InWSDM. 664–672.

10

https://www.w3.org/TR/turtle/
https://www.eia.gov/consumption/commercial/data/2012/
https://github.com/manahl/arctic
http://project-haystack.org/
https://studio.azureml.net/
https://mljar.com/
http://buildingdepot.org/
http://arxiv.org/abs/1705.07538
http://arxiv.org/abs/1705.07538
http://surpriselib.com
http://surpriselib.com

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Building Metadata Schema: Brick
	2.2 Metadata Normalization Methodologies

	3 Plaster Framework
	3.1 Architecture
	3.2 Inferencer
	3.3 Workflow

	4 Evaluation
	4.1 Experimental Setup
	4.2 Benchmarking
	4.3 Workflow
	4.4 Timeseries Feature Selection
	4.5 Programming APIs and Examples

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References

