Who can Access What, and When?

Understanding Minimal Access Requirements of Building Applications

Jason Koh, Dezhi Hong, Shreyas Nagare, Sudershan Boovaraghavan, Yuvraj Agarwal, Rajesh Gupta
{jbkoh,dehong}@ucsd.edu,{nagare,sudershan,yuvrajagarwal}@cmu.edu,rgupta@ucsd.edu
University of California, San Diego, Carnegie Mellon University

ABSTRACT

Smart building applications (apps) are faced with the real chal-
lenge of unfettered access to mission-critical building resources
that makes buildings vulnerable to attacks and occupants to pri-
vacy invasions. Existing methods that group users for access control
are too coarse-grained to avoid granting over-privileges to apps.
Furthermore, they lack means to model, express, and use access
patterns that can be critical in securing automated building opera-
tions. In this paper, We identify Who, What, and When as the key
information dimensions for building apps access control after thor-
oughly reviewing 125 smart building app publications in two major
venues. Our analysis reveals that dynamic access control requires
unique access patterns of individual apps, as well as the building
and user context. We also observe that existing Building Operating
Systems and IoT platforms fall short of sufficiently representing all
the necessary patterns, and further discuss future directions for the
design of access control systems needed to support building apps.

CCS CONCEPTS

« Security and privacy — Distributed systems security; - Com-
puter systems organization — Sensor networks.

KEYWORDS
Access control, smart buildings, IoT

ACM Reference Format:

Jason Koh, Dezhi Hong, Shreyas Nagare, Sudershan Boovaraghavan, Yuvraj
Agarwal, Rajesh Gupta. 2019. Who can Access What, and When?: Under-
standing Minimal Access Requirements of Building Applications. In The
6th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation (BuildSys ’19), November 13-14, 2019, New York, NY,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3360322.
3360868

1 INTRODUCTION

Buildings as a common application (app) platform have great poten-
tial to save energy and improve the quality of life for the occupants.
Building apps are connected to buildings through Building Oper-
ating Systems (BOS) [2, 7] to read sensors and control actuators
connected to the resources in the buildings. Similar to the challenges

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

BuildSys '19, November 13—14, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7005-9/19/11...$15.00
https://doi.org/10.1145/3360322.3360868

with overprivileged apps on smartphones [6], smart building apps
become vulnerable attack surfaces when they are granted too much
access to the underlying resources. To minimize the risk of a secu-
rity breach, Access Control is a must: Through the BOS, a manager
of the building should decide whether an app can read or control
the requested resources, in order to grant the app access to only
the necessary resources for its functionality.

However, unlike smartphones where users control their own
resources (e.g., camera), the smart building platform is a multi-
tenant environment. In such a shared platform, multiple users may
access the same resources via various apps, and the users usually
are not the resource managers. For example, if occupants want to
remotely control the Heating, Ventilation, and Air Conditioning
(HVAC) through a web interface, a building manager is actually the
one in charge of operating the equipment and can approve such
control. Furthermore, an occupant may have different purposes
for different apps, e.g., a lighting control vs the HVAC app, with
different access permissions.

Due to the multi-tenancy, apps are frequently overprivileged in
existing infrastructure and subject to data exfiltration. For exam-
ple, Genie [5] is a software thermostat through which registered
occupants control the HVAC in their offices, built on top of the
BuildingDepot [2] (BD) BOS. However, since user management is
delegated to Genie and not BD, BD provides the Genie app unfet-
tered access to all the HVAC terminal units in the building, even
though only 15 rooms are actively controlled by Genie every day.

Traditional access control patterns fail for two main reasons for
buildings. Access Control Lists (ACL) define fine-grained permis-
sions to control what actions each user of an app can take on each
object. Using ACLs, a resource manager would need to manually
approve the access per user per app, which quickly becomes unten-
able. Grouping resources and users may provide more descriptive
patterns for access control. However, existing patterns, such as
attributes [8] and roles [10], are not specific enough to represent
only the exact resources in buildings. Access control patterns for
building apps should be specific enough for resource managers to
balance expressiveness, understanding, and scalability.

In this paper, we review 125 papers on building apps at two major
venues in the last seven years to extract common resource access
patterns. We identify six high-level and 20 specific app categories.
We also find that Who, What, and When, are the three authoritative
dimensions for determining users’ access to the resources. We show
that these information dimensions are largely neglected in exist-
ing BOSes and IoT platforms, resulting in an unmanageable app
approval process and possibly overprivileged apps. Based on our
observations, we also provide design suggestions for access control
to BOSes for wider adoption of building applications.

https://doi.org/10.1145/3360322.3360868
https://doi.org/10.1145/3360322.3360868
https://doi.org/10.1145/3360322.3360868

BuildSys ’19, November 13-14, 2019, New York, NY, USA

2 PROBLEM FORMULATION

In the context of buildings, resources refer to the entities essential
to building apps [4], including all the physical points (e.g., sensors),
equipment (e.g., HVAC), the data generated by these points, and the
physical space (e.g., offices). We assume all the resources are man-
aged through a Building Operating System (BOS), which provides
programming interfaces for apps to interact with the resources in
the building. We thus regard a BOS as a trusted information source
so that we can augment its security measures on demand.

An app can manifest the necessary resources and the owners
should approve the app’s access. As a building is typically managed
by a building manager on behalf of the owner, (s)he has the author-
ity to arbitrate actions over the resources. However, a third-party
company may also deploy and manage additional resources in a
building, and could directly manage these resources or delegate the
control to the building manager. In other words, multiple resource
owners might need to work together to decide on the access policy.

The various users (e.g., occupants, building managers, etc.) would
inevitably have different demands, and thus should be granted
different permissions. For example, an occupant should be able to
change the temperature in her office but not her colleagues’. Since
different apps and the users need to access different resources,
and there could be hundreds of apps with thousands of users, to
manually create and maintain access control lists would require
much effort from the corresponding resource owners. Thus, the
capability to automatically represent and check what users can do
with apps is crucial to scaling access control for building apps.

3 RESOURCE ACCESS PATTERNS OF APPS
3.1 Analysis Setup

To holistically understand different access patterns, we have re-
viewed 125 papers published at BuildSys from 2009 to 2018 and
e-Energy from 2012 to 2018. The authors of these papers have
diverse industry and academic backgrounds, use heterogeneous
testbeds ranging from residential to office buildings, and cover an
extensive range of building apps. While Balaji et al. identified eight
app categories [4], we expand them to 20 categories under six high-
level domains!. The first and the second columns of Table 1 list the
app domains and categories, respectively. The authors reviewed
the papers and at least two authors cross-validated the results of
each paper. The full analysis is available online?, and we cite app
papers with their row number in the this document as (R#). We
identify three information dimensions that should be examined for
building apps to access the required resources:

e Who may use this app?

e What are the resources this app can possibly access?

e When, or in which context, can a user use this app?
Table 1 shows the access patterns required for each app category,
based on the three dimensions. They are complete in expressing
the representative apps studied in this paper and we expect them
to generalize to other building apps.

! The venues lack some app categories such as building security and healthcare though
our analysis applies to undiscovered categories in a similar manner.
Zhttps://tinyurl.com/building-apps-access-control

3.2 Who: User Type

We mainly identify five types of users within buildings. Occupants
typically use apps to control their environment (e.g. manage temper-
ature) or understand their behaviors (e.g., energy usage). Building
Managers oversee the operation of building with regard to space
management, equipment maintenance, energy efficiency, maintain-
ing security, etc. They may use most of the apps except the apps that
primarily produce indirect results such as Energy Models. Some
apps are designed to be used by Other Apps: Analytical apps, such
as a prediction model of an electrical device’s energy consump-
tion, may feed their output to other operative apps such as demand
response. Energy Providers are a unique type of users who do
not reside in target buildings. They collect information about a
building’s energy usage and use that to control the building equip-
ment either directly or indirectly through utility pricing or demand
response events, in order to stabilize the electrical grids. Some apps
are agnostic to user types, e.g., a public energy dashboard (R9) or a
location-based controller (R60) , which Anybody can use.

3.3 What: Resource Identification

Resource Types: Resource type is the most important class of
information, as any building app must access some resource(s),
whether it be a temperature sensor, a light bulb, or an office. The
resource type is also critical for reasoning about security since
different resource types have different capabilities, with different
consequences if breached. For example, upon a security breach, a
motion sensor may leak private occupancy information while an
airflow setpoint could physically damage the controlled equipment.
Resource Relations: Relations between resources connote their
relative functionalities, enabling precise resource identification. For
example, the causal control dependence between points are critical
for Fault Detection and Diagnostics (FDD) (R33) ; when the supply
airflow of a VAV is anomalous, the corresponding actuator in the
same VAV are required for analysis. Except for apps that need to
access all the resources of some type (e.g., a tool visualizing all
the building energy meters (R9)), resource relations are a crucial
information dimension for describing apps’ requirements.

Resource-User Relations: Resources serve, monitor, and/or are
controlled by users, and thus expressing these relationships is a key.
We identify three kinds of such relations. First, in buildings, space
is often assigned to a person whether it is an office, a lab, or a desk.
Consequently, a sensor in an assigned space reveals information
about the person, e.g., presence or schedule. Thus, space-related
apps, such as occupancy detection, need to get approval from the
associated person who is being monitored when accessing these
resources. Note that while theoretically everyone needs to approve
an app’s access to their data, this process may be delegated to
someone like a building manager. Delegation is out of the scope
of this paper though it is complementary to any access conditions.
Second, people use personal or allocated devices to customize the
indoor environment such as lighting (R60) . It is thus necessary to
consider what devices each user has. Lastly, user preferences are
frequently used in apps that improve the occupants’ comfort and
productivity. We discover that multiple apps need user preferences
over conditions such as lighting and temperature to control the
environment for the users based on their locations (R43) .

https://tinyurl.com/building-apps-access-control

Who can Access What, and When?

BuildSys *19, November 13-14, 2019, New York, NY, USA

Table 1: Resource Access Patterns across Different App Categories. An app may access only the resources meeting all the
marked conditions. “rsrc¢” stands for resource and “—” for a relation between the two classes. Brick [4] comprehensively
models “rsrc type” and “rsrce>rsrc” but not the rest of the table.

‘ Who ‘ What ‘ When
“— o a > 5} = 8 L oy
S ehg S B] & =) g = 22 = g -
App Domain App Category a, g .5 @ ° BT Slz 1 lo T8 % 2 g E% § g& d
RN R LR R
¥ |3 BE B §&R| g & 3%3c 3438 2 §3% ¥ o& 38
Maintenance FDD 6 ® O O O|e @€ O O O|lO O O O O
Space Management 2 | O ®@ ®@ O O | ® @€ @@ O O|O O @ O @ O
Building EnvironmentModel 2 | O @®@ O O O ®@€ ®@€ O O OO O O O O O
Modeling StructuralModel 1 | O ®@ ®€ O O | ® ®@€ O O O|O O O O @ O
Energy Energy Disaggregation 20 | ® @ @ c|le e @] o O O
Analysis Appliance Identificaton 1 |O ® @ O O | ®@ ®€ O O O|O O O O @ O
Thermal Comfort Model 7 | @ O O|e e O o O O
Energy Model 8 ® 6 ¢ O e o O olo O O O e O
Energy Footprinting 5 | @ @® @ O O | @ oj]o o 0O O O O
Efficient Model-Predictive Control 11 [J o 0O|le @€ O O O|]O0O O O O
Control Occupancy-Based Control 21 [oO|le e (@) O
Demand Response 20 ® O e O|e e O o O [] O
Occupancy Occupancy Detection 13 ® ¢ O O|e o o0 O O O
Modeling Occupancy Identification 4 ® @ @® O O | @ @ O O|O0O O O O O
Activity Recognition 3 | ® @ @ Ol e @ ®@ O O O O O
BehaviorModelng 2 |O ®© @€ O O | ® € O @€ OO O O O O O
User WebDisplays 2 | @6 ® O O @e|® ® O O O|O O O O O O
Interface RemoteController 2 | @ O O O e | ®€ ®€ O O O|O O O O O e
Participatory Sensing 5 | @ O O O|e e o O o O O
@®: #apps > 75% @:75% > #apps > 50% @: 50% > #apps > 25% :25% > #apps > 0% O: no apps

3.4 When: Access Context

Resource access may be temporally granted based on the user/app
context, so as to prevent overprivileged apps with constant access.
User Location: As a user is physically present in a particular space,
apps related to occupants can refer to the user’s location. For exam-
ple, an app for occupancy-based HVAC control (R72) is currently
granted access to all the VAVs in an entire building all the time,
whereas it should access only some VAV when the user is nearby.
Resource State: An app may need to be active based on resources’
states. For example, a lighting controller should be active only when
the associated room is occupied. Note that, the difference between
user location and resource state is that the user’s location is specific
to a target user while a resource’s state is occupant agnostic.
Schedule: Temporal bounds may be explicitly defined, whether
they are regular schedules or temporal bookings.

Demand Response: Demand Response (DR) events rarely occur —
usually several times per year even for program participants. Only
when a DR event happens should automated DR apps be active,
which have powerful capability to control the entire buildings.
One-time Access: Data-driven apps need to access historical data
for training, but once they train their models, the data should not
be accessible and only the trained models should be used.

User Request: Apps such as remote controllers convey users’ in-
tention to control the system. An app’s request should be valid only
when it can be verified to be from the actual user.

3.5 An Example for Access Pattern Evaluation

To evaluate and approve an access request from an app, the BOS
needs to first identify the app and user, i.e., authentication, and
then check its access pattern — whether the request satisfies the
information dimensions (i.e., columns defined in Table 1), includ-
ing the user’s role, whether the user is trying to access permitted
resource(s), whether the user’s demand has expired, etc. For exam-
ple, an HVAC remote control app can be authorized only when an
occupant (user type) is trying to control the temperature setpoint
(resource type) of the terminal unit (resource-resource relations)
in his/her office (resource-user relation) when (s)he sends a request
(user request event).

However, we shall note that, as each app may uniquely describe
its required resources and the relations among them, i.e., resource
group, the request approval process thus involves interpreting a
potentially tremendous set of combinations. Since it is impossible
to exhaustively predefine static resource groups in BOSes to cover
all the possible patterns, and rather, BOSes should be able to verify
different information at runtime.

4 EXISTING ACCESS CONTROL PLATFORMS

BOSes (and IoT platforms) use different access control models for
evaluating information sources, as summarized in Table 2.
General IoT cloud services (e.g., AWS IoT) and commercial BOSes
(e.g., NiagaraAX [12]) support only ACLs and roles [10] for autho-
rization.An ACL is a list of permissions for various users on a single

BuildSys ’19, November 13-14, 2019, New York, NY, USA

Table 2: Access control patterns supported in existing Smart
Building and IoT platforms.

System Who What When

Wave [3] Individuals Predefined groups No
BuildingDepot3 [2] Custom groups Tag-based groups No
NiagaraAX [12] Individuals & Roles Each object No
Cloud IoTs [1] Individuals & Roles Each object No
ESO [11] Individuals Each object Yes

resource and each resource maintains its unique ACL. Thus, al-
though ACLs and user roles alone could provide stringent access
controls, even in one building, a system manager would have to
laboriously maintain an immense number of ACLs for tens of apps
and hundreds of users. To overcome ACLs’ limited expressibility,
many access control patterns have been proposed for multi-tenant
cloud platforms [9]. However, these models are often too special-
ized for computational resources, lacking interleaved relationships,
and the context barely changes over time while the users’ behaviors
and built environments change over time.

Wave [3] and BuildingDepot3 (BD3) [2] support grouping re-
sources for authorizing apps. Wave allows delegating the authoriza-
tion of a group of resources to another entity, but does not specify
the definition of groups, which could be based on the hierarchy of
location or equipment. In addition, apps need different groupings
to follow the principle of least privilege, as they may need different
resources in the same group (e.g., on the same floor.) For example,
assuming an instance of the HVAC remote control app implemented
with Wave that groups the resources based on rooms, it will be
allowed to take any actions on all the data points (commonly ~15)
in a room, whereas it only needs to read the temperature sensor
and change the temperature setpoint. Such grouping unnecessar-
ily exposes more resources to the app and the ability to control
safety-related points such as a minimum airflow setpoint.

BD3 [2] allows flexible grouping over resources based on tags.
For example, a group may consist of all the sensors with the “tem-
perature” tag. BD3’s grouping is more flexible than Wave’s as a
resource may belong to multiple groups. Still, the groups are manu-
ally defined and might not cover all the possible patterns.

Furthermore, Wave and BD3 do not employ contextual infor-
mation such as a “user request” event. An occupant might use the
HVAC remote controller infrequently, e.g., when she is working out-
side the regular schedule or during atypical weather. Thus, the app
does not have to be granted access for the user all the time. Instead,
a BOS should incorporate a temporal authorization, such as to set
an expiration date or to schedule timed activation, while tracking
the relevant events from trusted sources. Environmental Situation
Oracles (ESOs) [11] perform access control based on events that
can be generalized into When-type information. It is necessary to
incorporate dynamic events with metadata from different sources
for the most general and expressive access control patterns.

Still, while buildings are a multi-tenant platform, none of the
aforementioned systems are designed for apps serving multiple
users, but rather they consider an app as a standalone entityWhen
the HVAC remote controller is implemented with these systems,
the app would have permissions for the superset of all the possible
users’ all the time, thus being unnecessarily overprivileged. In other

words, the app would be able to access hundreds of the terminals
units in the entire building all the time, while it should only access
around 10 rooms’ terminal units per day on average.

5 DESIGN SUGGESTIONS

We have shown that Who, What, and When are the three authoritative
information dimensions to tightly describe all the apps’ access
patterns we studied, which none of the existing BOSes expose
effectively. For the secure adoption of smart building apps at scale,
we recommend several design considerations for access control:

(1) Instead of preconfiguring resource groups, BOSes should adopt
flexible groupings over the complete view of building systems
due to the heterogeneous apps’ access patterns. (What)

(2) BOSes should have a way to join a building’s metadata with
the users’, and users should be a part of the system modeling
process. (Who and What)

(3) The metadata of buildings and users should be rigorously main-
tained. Access control patterns would rely on the metadata,
applied to all the resources. Automated verification processes
for metadata correctness is also desirable.

(4) Resources’ context should be easily verifiable and it should be
describable inside access patterns from apps (When).

(5) An app’s access capability should be dynamically determined
based on its users and the context at runtime, instead of sub-
suming all the potential access requests.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation
[1526841, 1526237, 1564009, 1801472].

REFERENCES

[1] 2019. AWS IoT Authorization. https://docs.aws.amazon.com/iot/latest/
developerguide/authorization.html. (2019). accessed 2019-06-22.

[2] 2019. BuildingDepot 3.0. https://buildingdepot.org/. (2019). accessed 2019-06-22.

[3] Michael P. Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb,
Hyung-Sin Kim, David E. Culler, and Raluca Ada Popa. 2019. WAVE: A Decen-
tralized Authorization Framework with Transitive Delegation. In 28th USENIX
Security Symposium.

[4] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,
Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, et al.
2018. Brick: Metadata schema for portable smart building applications. Applied
energy 226 (2018), 1273-1292.

[5] Bharathan Balaji, Jason Koh, Nadir Weibel, and Yuvraj Agarwal. 2016. Genie:
a longitudinal study comparing physical and software thermostats in office
buildings. In UbiComp.

[6] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I Hong, and Yuvraj
Agarwal. 2017. Does this app really need my location?: Context-aware privacy
management for smartphones. IMWUT 1, 3 (2017), 42.

[7] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar,
Gabe Fierro, Nikita Kitaev, and David Culler. 2013. {BOSS}: Building operating
system services. In NSDI. 443-457.

[8] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang,

Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen

Scarfone, et al. 2013. Guide to attribute based access control (abac) definition and

considerations (draft). NIST special publication 800, 162 (2013).

Canh Ngo, Yuri Demchenko, and Cees de Laat. 2016. Multi-tenant attribute-based

access control for cloud infrastructure services. Journal of Information Security

and Applications 27 (2016), 65-84.

Ravi S Sandhu. 1998. Role-based access control. In Advances in computers. Vol. 46.

Elsevier, 237-286.

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational Access Con-

trol in the Internet of Things. In Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security. ACM, 1056-1073.

Tridium. 2017. Niagara Enterprise Security. https://tinyurl.com/yyh5q6ek. (2017).

accessed 2019-06-22.

[o

[10

[11

[12

https://docs.aws.amazon.com/iot/latest/developerguide/authorization.html
https://docs.aws.amazon.com/iot/latest/developerguide/authorization.html
https://buildingdepot.org/
https://tinyurl.com/yyh5q6ek

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Resource Access Patterns of Apps
	3.1 Analysis Setup
	3.2 Who: User Type
	3.3 What: Resource Identification
	3.4 When: Access Context
	3.5 An Example for Access Pattern Evaluation

	4 Existing Access Control Platforms
	5 Design Suggestions
	Acknowledgments
	References

